Т. е. вечный двигатель первого рода —




Вращения.

Закон всемирного тяготения. Потенциал поля тяготения. Космические скорости.

Постулаты специальной (частной) теории относительности. Следствия СТО: длительность событий в разных системах отсчета, длина тел в разных системах отсчета и закон взаимосвязи массы и энергии.

Статистический и термодинамический методы. Температура. Опытные законы идеального газа.

Уравнение Клапейрона — Менделеева. Основное уравнение молекулярно-кинетической теории идеальных газов.

Закон Максвелла о распределении молекул идеального газа по скоростям и энергиям теплового движения.

14) Явления переноса в термодинамически неравновесных системах. Теплопровод​ность, диффузия и внутреннее трение.

Число степеней свободы молекулы. Закон равномерного распределения энергии по степеням свободы молекул.

Первое начало термодинамики. Работа газа при изменении его объема. Теплоемкость.

Уравнением Майера. Адиабатический процесс. Термический коэффициент полезного действия для кругового процесса.

Энтропия, ее статистическое толкование и связь с термодинамической вероятностью. Второе начало термодинамики.

Тепловые двигатели и холодильные машины. Цикл Карно и его к. п. д. для идеального газа.

Изотермы реальных газов. Фазовые переходы. Критическое состояние. Тройная точка фазового равновесия. Сжижение газов.

Электростатика. Закон Кулона. Электростатическое поле. Напряженность электростатического поля.

Линии напряженности электростатического поля. Теорема Гаусса для электростатического поля.

Работа по перемещению заряда в электростатическом поле. Потенциал электростатического поля. Циркуляцией вектора напряженности.

Типы диэлектриков. Поляризация диэлектриков. Напряженность поля в диэлектрике. Диэлектрической проницаемостью среды.

Проводники в электростатическом поле. Электростатическая индукция. Электрическая емкость уединенного проводника. Электроемкость конденсаторов.

Электрический ток, сила и плотность тока. Закон Ома. Сопротивление проводников. Работа и мощность тока. Закон Джоуля — Ленца.

Сторонние силы. Электродвижущая сила. Закон Ома для замкнутой цепи с ЭДС. Правила Кирхгофа для разветвленных цепей.

28) Магнитное взаимодействие элементов тока. Магнитное поле. Закон Био-Савара-Лапласа. Циркуляция вектора В магнитного поля в вакууме.

Поток вектора магнитной индукции. Теорема Гаусса для поля В. Явление электромагнитной индукции (опыты Фарадея).

Закона электромагнитной индукции Фарадея. Правило Ленца. Индуктивность контура. Самоиндукция.

Магнетики: диамагнетики парамагнетики и ферромагнетики. Магнитное поле в веществе. Магнитная проницаемость магнетика.

Основы теории Максвелла для электромагнитного поля. Ток смещения. Уравнения Максвелла для электромагнитного поля в интегральной форме.

Электромагнитные волны. Уравнение электромагнитной волны. Скорость распространения электромагнитных волн. Гармоническая волна. Связь периода колебаний и длины волны для гармонической волны

Свободные гармонические колебания в колебательном контуре. Переменный ток. Цеп переменного тока, содержащая последовательно включенные резистор, катушку индуктивности и конденсатор. Резонанс напряжений.

1)

Механика для описания движения тел в зависимости от условий конкретных задач использует разные физические модели. Простейшей моделью является матери­альная точка — тело, обладающее массой, размерами которого в данной задаче мож­но пренебречь. Произвольное макроскопическое тело или систему тел можно мысленно разбить на малые взаимодействующие между со­бой части, каждая из которых рассматри­вается как материальная точка. Тогда изучение движения произвольной системы тел сводится к изучению системы матери­альных точек. В механике сначала изуча­ют движение одной материальной точки, а затем переходят к изучению движения системы материальных точек. Под воздействием тел друг на друга тела могут деформироваться, т. е. изме­нять свою форму и размеры. Поэтому в механике вводится еще одна модель — абсолютно твердое тело. Абсолютно твер­дым телом называется тело, которое ни при каких условиях не может деформиро­ваться и при всех условиях расстояние между двумя точками этого тела остается по­стоянным. Положение материальной точки опре­деляется по отношению к какому-либо другому, произвольно выбранному телу, называемому телом отсчета. С ним связы­вается система отсчета — совокупность системы координат и часов, связанных с телом отсчета. Траекто­рия движения материальной точки — ли­ния, описываемая этой точкой в простран­стве. В зависимости от формы траектории движение может быть прямолинейным или криволинейным.

Отсчет времени начнем с момен­та, когда точка находилась в положении А. Длина участка траектории АВ, прой­денного материальной точкой с момента начала отсчета времени, называется дли­ной пути As и является скалярной фун­кцией времени: Ds = Ds(t). Вектор Dr=r-r0, проведенный из начального положе­ния движущейся точки в положение ее в. данный момент времени (приращение радиуса-вектора точки за рассматривае­мый промежуток времени), называется пе­ремещением.
При прямолинейном движении вектор перемещения совпадает с соответствую­щим участком траектории и модуль пе­ремещения |Dr| равен пройденному пу­ти Ds.

 

2)

Для характеристики движения материаль­ной точки вводится векторная величина — скорость, которой определяется как быстрота движения, так и его направление в данный момент времени.
Пусть материальная точка движется по какой-либо криволинейной траектории так, что в момент времени t ей соответ­ствует радиус-вектор r0. В течение малого промежутка времени Dt точка прой­дет путь As и получит элементарное (бес­конечно малое) перемещение Dr.
Вектором средней скорости <v > назы­вается отношение приращения Dr радиуса-вектора точки к промежутку времени Dt:

Направление вектора средней скоро­сти совпадает с направлением Dr. При неограниченном уменьшении Dt средняя скорость стремится к предельному значе­нию, которое называется мгновенной ско­ростью v:

Мгновенная скорость v, таким образом, есть векторная величина, равная первой производной радиуса-вектора движущей­ся точки по времени. Так как секущая в пределе совпадает с касательной, то вектор скорости v направлен по касатель­ной к траектории в сторону движения (рис. 3). По мере уменьшения Dt путь Ds все больше будет приближаться к |Dr|, поэтому модуль мгновенной скорости

 


Таким образом, модуль мгновенной скоро­сти равен первой производной пути по времени:

При неравномерном движении модуль мгновенной скорости с течением времени изменяется. В данном случае пользуются скалярной величиной (v) — средней ско­ростью неравномерного движения:

Если выражение ds = vdt (2.2) проинтегрировать по времени в пределах от t до t+ D t, то найдем длину пути, пройденного точкой за время Dt:

В случае равномерного движения число­вое значение мгновенной скорости посто­янно; тогда выражение (2.3) примет вид

Длина пути, пройденного точкой за промежуток времени от t 1до t 2, дается интегралом

В случае неравномерного движения важно знать, как быстро изменяется скорость с течением времени. Физической величи­ной, характеризующей быстроту измене­ния скорости по модулю и направлению, является ускорение. Средним ускорением неравномерного движения в интервале от t до t+ D t на­зывается векторная величина, равная от­ношению изменения скорости Dv к интер­валу времени Dt:

Мгновенным ускорением а (ускорени­ем) материальной точки в момент време­ни t будет предел среднего ускорения:

Таким образом, ускорение а есть вектор­ная величина, равная первой производной скорости по времени. Тангенциальная составляющая уско­рения


т.е. равна первой производной по времени от модуля скорости, определяя тем самым быстроту изменения скорости по модулю.

Вторая составляющая ускоре­ния, равная

называется нормальной составляющей ус­корения и направлена по нормали к тра­ектории к центру ее кривизны

Полное ускорение тела есть геометри­ческая сумма тангенциальной и нормаль­ной составляющих (рис.5):

Итак, тангенциальная составляющая ускорения характеризует быстроту изменения скорости по модулю (направлена по касательной к траектории), а нормальная составляющая ускорения — быстроту из­менения скорости по направлению (на­правлена к центру кривизны траекто­рии).

3)

Угловой скоростью называется вектор­ная величина, равная первой производной угла поворота тела по времени. Линейная скорость точки

В векторном виде формулу для линейной скорости можно написать как вектор­ное произведение:

При этом модуль векторного произведе­ния, по определению, равен
, а направление совпадает с направлением поступательного движения правого винта при его вращении от w к R.
Если w=const, то вращение равномер­ное и его можно характеризовать перио­дом вращения Т — временем, за которое точка совершает один полный оборот, т. е. поворачивается на угол 2p. Так как промежутку времени Dt=T соответствует Dj=2p, то w= 2p/Т, откуда

связь между линейны­ми (длина пути s, пройденного точкой по дуге окружности радиуса R, линейная ско­рость v, тангенциальное ускорение аt, нор­мальное ускорение а n) и угловыми величи­нами (угол поворота j, угловая скорость (о, угловое ускорение e) выражается сле­дующими формулами:

4) Динамика является основным разделом механики, в ее основе лежат три закона Ньютона, сформулированные им в 1687 г. Первый закон Ньютона: всякая мате­риальная точка (тело) сохраняет состоя­ние покоя или равномерного прямолиней­ного движения до тех пор, пока воздейст­вие со стороны других тел не заставит ее изменить это состояние. Стремление тела сохранять состояние покоя или равномерного прямолинейного движения называется инертностью. По­этому первый закон Ньютона называют также законом инерции.
Механическое движение относительно, и его характер зависит от системы отсче­та. Первый закон Ньютона выполняется не во всякой системе отсчета, а те системы, по отношению к которым он выполняется, называются инерциальными системами от­счета. Инерциальной системой отсчета яв­ляется такая система, которая либо по­коится, либо движется равномерно и прямолинейно относительно какой-то другой инерциальной системы. Первый закон Ньютона утверждает существование инерциальных систем отсчета. Масса тела — физическая величина, являющаяся одной из основных характе­ристик материи, определяющая ее инерци­онные (инертная масса) и гравитацион­ные (гравитационная масса) свойства. В настоящее время можно считать дока­занным, что инертная и гравитационная массы равны друг другу с очень высокой точностью. Чтобы описывать воздействия, упоми­наемые в первом законе Ньютона, вводят понятие силы. Под действием сил тела либо изменяют скорость движения, т. е. приобретают ускорения (динамиче­ское проявление сил), либо деформируют­ся, т. е. изменяют свою форму и размеры (статическое проявление сил). В каждый момент времени сила характеризуется чис­ловым значением, направлением в про­странстве и точкой приложения. Итак, сила — это векторная величина, являюща­яся мерой механического воздействия на тело со стороны других тел или полей, в результате которого тело приобретает ускорение или изменяет свою форму и раз­меры. Второй закон Ньютона — основной за­кон динамики поступательного движе­ния — отвечает на вопрос, как изменяет­ся механическое движение материальной точки (тела) под действием приложен­ных к ней сил. Второй закон Ньютона: ускорение, приобретаемое материальной точкой (телом), пропорцио­нально вызывающей его силе, совпадает с нею по направлению и обратно пропорционально массе материальной точ­ки (тела). a = F /m,
или
F = m a = md v /dt. Векторная величина численно равная произведению массы ма­териальной точки на ее скорость и име­ющая направление скорости, называется импульсом (количеством движения) этой материальной точки. F =d p /dt. Это выражение — более общая формули­ровка второго закона Ньютона: скорость изменения импульса материальной точки равна действующей на нее силе. Выраже­ние F =d p /dt называется уравнением движе­ния материальной точки. Единица силы в СИ — ньютон (Н): 1 Н — сила, которая массе в 1 кг сообща­ет ускорение 1 м/с2 в направлении дейст­вия силы:
1 Н=1 кг•м/с2. Второй закон Ньютона справедлив только в инерциальных системах отсчета.механике большое значение имеет принцип независимости действия сил: если на материальную точку действует одно­временно несколько сил, то каждая из этих сил сообщает материальной точке ускорение согласно второму закону Ньютона, как будто других сил не было

5) Взаимодействие между материальными точками (телами) определяется третьим законом Ньютона: всякое действие мате­риальных точек (тел) друг на друга носит характер взаимодействия; силы, с которы­ми действуют друг на друга материальные точки, всегда равны по модулю, противо­положно направлены и действуют вдоль прямой, соединяющей эти точки:
F 12=- F 2I,
где F 12 — сила, действующая на первую материальную точку со стороны второй; F 21 — сила, действующая на вторую мате­риальную точку со стороны первой. Эти силы приложены к разным материальным точкам (телам), всегда действуют парами и являются силами одной природы. Третий закон Ньютона позволяет осу­ществить переход от динамики отдельной материальной точки к динамике системы материальных точек. Это следует из того, что и для системы материальных точек взаимодействие сводится к силам парного взаимодействия между материальными точками. Для вывода закона сохранения импульса рассмотрим некоторые понятия. Совокуп­ность материальных точек (тел), рассмат­риваемых как единое целое, называется механической системой. Силы взаимодей­ствия между материальными точками ме­ханической системы называются внутрен­ними. Силы, с которыми на материальные точки системы действуют внешние тела, называются внешними. Механическая система тел, на которую не действуют внешние силы, называется замкнутой (или изолированной). Если мы имеем механиче­скую систему, состоящую из многих тел, то, согласно третьему закону Ньютона, силы, действующие между этими телами, будут равны и противоположно направле­ны, т. е. геометрическая сумма внутренних сил равна нулю.
Рассмотрим механическую систему, состоящую из n тел, масса и скорость которых соответственно равны т 1 ,m 2,..., тn и v 1, v 2,..., v n. Пусть F '1, F '2,..., F 'n — равнодействующие внутренних сил, действующих на каждое из этих тел, a f 1, f 2,..., F n — равнодействующие внешних сил. Запишем второй закон Ньютона для каждого из n тел механической системы:
d/dt(m1v1)= F '1+ F 1,
d/dt(m2v2)= F' 2+ F 2,
d/dt)mn v n)= F 'n+ F n.
Складывая почленно эти уравнения, получим
d/dt (m1 v 1+m2 v 2+... + mn v n) = F '1+ F '2+...+ F ' n + F 1+ F 2+...+ F n.
Но так как геометрическая сумма внутрен­них сил механической системы по третьему закону Ньютона равна нулю, то
d/dt(m1v1+m2v2 +... + mnvn)= F 1 + F 2+...+ F n, или
dp/dt= F 1+ F 2+...+ F n, (9.1)
где
импульс системы. Таким образом, производная по времени от им­пульса механической системы равна гео­метрической сумме внешних сил, действующих на систему.
В случае отсутствия внешних сил (рассматриваем замкнутую систему)

Это выражение и является законом сохранения импульса: импульс замкнутой системы сохраняется, т. е. не изменяется с течением времени.
Закон сохранения импульса справед­лив не только в классической физике, хотя он и получен как следствие законов Ньютона. Эксперименты доказывают, что он выполняется и для замкнутых систем микрочастиц (они подчиняются законам квантовой механики). Этот закон носит универсальный характер, т. е. закон со­хранения импульса — фундаментальный закон природы. В механике Галилея — Ньютона из-за независимости массы от скорости импульс системы может быть выражен через ско­рость ее центра масс. Центром масс (или центром инерции) системы материальных точек называется воображаемая точка С, положение которой характеризует распре­деление массы этой системы. Ее радиус-вектор равен

где mi и ri — соответственно масса и радиус-вектор i-й материальной точки; n — число материальных точек в системе;

— масса системы.
Скорость центра масс
центр масс системы движется как материальная точка, в которой сосредото­чена масса всей системы и на которую действует сила, равная геометрической сумме всех внешних сил, действующих на систему. Из закона со­хранения импульса вытекает, что центр масс замкнутой системы либо движется прямолинейно и равномерно, либо остает­ся неподвижным.

6) Энергия — универсальная мера различ­ных форм движения и взаимодействия. С различными формами движения мате­рии связывают различные формы энергии: механическую, тепловую, электромагнит­ную, ядерную и др. В одних явлениях форма движения материи не изменяется (например, горячее тело нагревает холод­ное), в других — переходит в иную фор­му (например, в результате трения меха­ническое движение превращается в тепло­вое). Однако существенно, что во всех случаях энергия, отданная (в той или иной форме) одним телом другому телу, равна энергии, полученной последним телом.
Изменение механического движения тела вызывается силами, действующими на него со стороны других тел. Чтобы
количественно характеризовать процесс обмена энергией между взаимодействую­щими телами, в механике вводится по­нятие работы силы.
Если тело движется прямолинейно и на него действует постоянная сила F, которая составляет некоторый угол а с на­правлением перемещения, то работа этой силы равна произведению проекции силы Fs на направление перемещения (Fs = Fcosa), умноженной на перемещение точки приложения силы:
A = Fss = Fs cosa. (11.1) В общем случае сила может изменять­ся как по модулю, так и по направлению, поэтому формулой (11.1) пользоваться не­льзя. Если, однако, рассмотреть элемен­тарное перемещение dr, то силу F можно считать постоянной, а движение точки ее приложения — прямолинейным. Элемен­тарной работой силы F на перемещении d r называется скалярная величина
= F d r = F cosa• ds=Fsds,
где а — угол между векторами F и d r; ds = |d r | — элементарный путь; Fs — про­екция вектора F на вектор d r. Работа силы на участке траектории от точки 1 до точки 2 равна алгебраической сумме элементарных работ на отдельных бесконечно малых участках пути. Эта сум­ма приводится к интегралу

Для вычисления этого интеграла надо знать зависимость силы Fs от пути s вдоль траектории 12. Единица работы — джоуль (Дж): 1 Дж — работа, совершаемая силой в 1 Н на пути в 1 м (1 Дж = 1 Н•м).
Чтобы охарактеризовать скорость со­вершения работы, вводят понятие мощ­ности:
N=da/dt. (11.3)
За время dt сила F совершает работу F d r, и мощность, развиваемая этой силой, в данный момент времени
N= F d r /dt= Fv
т. е. равна скалярному произведению век­тора силы на вектор скорости, с которой движется точка приложения этой силы; N — величина скалярная.
Единица мощности — ватт (Вт): 1 Вт — мощность, при которой за время 1 с совершается работа в 1 Дж (1 Вт = 1 Дж/с).

Кинетическая энергия механической системы — это энергия механического движения этой системы.
Сила F, действуя на покоящееся тело и вызывая его движение, совершает рабо­ту, а энергия движущегося тела возраста­ет на величину затраченной работы. Таким образом, работа dA силы F на пути, кото­рый тело прошло за время возрастания скорости от 0 до v, идет на увеличение кинетической энергии dT тела, т. е.
dA= dT.
Используя второй закон Ньютона F =md v /dt
и умножая обе части равен­ства на перемещение d r, получим
F d r =m(d v /dt)dr=dA

Таким образом, тело массой т, движущее­ся со скоростью v, обладает кинетической энергией
Т = тv2/2. (12.1)
Из формулы (12.1) видно, что кинети­ческая энергия зависит только от массы и скорости тела, т. е. кинетическая энергия системы есть функция состояния ее дви­жения.
При выводе формулы (12.1) предпола­галось, что движение рассматривается в инерциальной системе отсчета, так как иначе нельзя было бы использовать за­коны Ньютона. В разных инерциальных системах отсчета, движущихся друг отно­сительно друга, скорость тела, а следова­тельно, и его кинетическая энергия будут неодинаковы. Таким образом, кинетиче­ская энергия зависит от выбора системы отсчета.

Потенциальная энергия — механиче­ская энергия системы тел, определяемая их взаимным расположением и характе­ром сил взаимодействия между ними.
Пусть взаимодействие тел осуществля­ется посредством силовых полей (напри­мер, поля упругих сил, поля гравитацион­ных сил), характеризующихся тем, что работа, совершаемая действующими сила­ми при перемещении тела из одного поло­жения в другое, не зависит от того, по какой траектории это перемещение прои­зошло, а зависит только от начального и конечного положений. Такие поля на­зываются потенциальными, а силы, дей­ствующие в них,— консервативными. Если же работа, совершаемая силой, зависит от траектории перемещения тела из одной точки в другую, то такая сила называется диссипативной; ее примером является си­ла трения.
Тело, находясь в потенциальном поле сил, обладает потенциальной энергией. Работа консервативных сил при элемен­тарном (бесконечно малом) изменении конфигурации системы равна приращению потенциальной энергии, взятому со знаком минус, так как работа совершается за счет убыли потенциальной энергии:
dA=-dП. Потенциальная энергия может быть определена

где С — постоянная интегрирования, т. е. потенциальная энергия определяется с точностью до некоторой произвольной по­стоянной. Это, однако, не отражается на физических законах, так как в них входит или разность потенциальных энергий в двух положениях тела, или производная П по координатам. Поэтому потенциаль­ную энергию тела в каком-то определен­ном положении считают равной нулю (вы­бирают нулевой уровень отсчета), а энер­гию тела в других положениях отсчитыва­ют относительно нулевого уровня. по­тенциальная энергия тела массой т, под­нятого на высоту h над поверхностью Зем­ли, равна
П = mgh, (12.7)
где высота h отсчитывается от нулевого уровня, для которого П0 = 0. Сила упругости пропорциональна дефор­мации:
Fхупр=-kx,
где Fxупр— проекция силы упругости на ось х;kкоэффициент упругости (для пружины — жесткость), а знак минус ука­зывает, что Fx направлена в сторону, противоположную деформации х. Потенциальная энергия системы, подо­бно кинетической энергии, является функ­цией состояния системы. Она зависит толь­ко от конфигурации системы и ее положе­ния по отношению к внешним телам.
Полная механическая энергия систе­мы — энергия механического движения и взаимодействия:
Е = Е+П,
т. е. равна сумме кинетической и потен­циальной энергий. Закон сохранения энергии — результат обобщения многих экспериментальных данных. Идея этого закона принадлежит М. В. Ломоносову, изложив­шему закон сохранения материи и движе­ния, а количественная формулировка за­кона сохранения энергии дана немецким врачом Ю. Майером и не­мецким естествоиспытателем Г. Гельмгольцем. При переходе системы из состояния 1 в ка­кое-либо состояние 2

т. е. изменение полной механической энер­гии системы при переходе из одного со­стояния в другое равно работе, совершен­ной при этом внешними неконсервативны­ми силами. Если внешние неконсерватив­ные силы отсутствуют, то следует, что
d(Т+П) = 0,
откуда
Т+П = E=const, (13.3)
т. е. полная механическая энергия системы сохраняется постоянной. Выражение (13.3) представляет собой закон сохране­ния механической энергии: в системе тел, между которыми действуют только кон­сервативные силы, полная механическая энергия сохраняется, т. е. не изменяется со временем.
Механические системы, на тела кото­рых действуют только консервативные си­лы (внутренние и внешние), называются консервативными системами. Закон сохра­нения механической энергии можно сфор­мулировать так: в консервативных систе­мах полная механическая энергия сохра­няется.
Закон сохранения механической энер­гии связан с однородностью времени, т. е. инвариантностью физических зако­нов относительно выбора начала отсчета времени. Например, при свободном паде­нии тела в поле сил тяжести его скорость и пройденный путь зависят лишь от на­чальной скорости и продолжительности свободного падения тела и не зависят от того, когда тело начало падать.
Существует еще один вид систем — диссипативные системы, в которых меха­ническая энергия постепенно уменьшается за счет преобразования в другие (немеханические) формы энергии. Этот процесс получил название диссипации (или рассе­яния) энергии. Строго говоря, все системы в природе являются диссипативными.
В консервативных системах полная механическая энергия остается постоян­ной. Могут происходить лишь превраще­ния кинетической энергии в потенциаль­ную и обратно в эквивалентных количе­ствах, так что полная энергия остается неизменной.

7) Моментом силы F относительно неподвиж­ной точки О называется физическая вели­чина, определяемая векторным произведе­нием радиуса-вектора г, проведенного из точки О в точку А приложения силы, на силу F. M = [ rF ]. Модуль момента силы M = Frsina= Fl, где a — угол между г и F; rsina = l — кратчайшее расстояние между линией дей­ствия силы и точкой Оплечо силы. Моментом силы относительно непод­вижной оси z называется скалярная вели­чина Мz, равная проекции на эту ось век­тор а М момента силы, определенного от­носительно произвольной точки О данной оси 2. Значение момента Мz не зависит от выбора положения точки О на оси z.

Если ось z совпадает с направлением вектора М, то момент силы представляется в виде вектора, совпадающего с осью:

М z = [ rF ]z.

Уравнение (18.3) представляет собой уравнение динамики вращательного дви­жения твердого тела относительно непод­вижной оси.

Можно показать, что если ось враще­ния совпадает с главной осью инерции, проходящей через центр масс, то имеет место векторное равенство

где J — главный момент инерции тела (момент инерции относительно главной оси).

 

8) При изучении вращения твердого тела пользуются понятием момента инерции. Моментом инерции системы (тела) отно­сительно оси вращения называется физи­ческая величина, равная сумме произведе­ний масс n материальных точек системы на квадраты их расстояний до рассматри­ваемой оси:

В случае непрерывного распределения масс эта сумма сводится к интегралу

где интегрирование производится по всему объему тела. Величина r в этом случае есть функция положения точки с коорди­натами х, у, z.

Если известен момент инерции тела относительно оси, проходящей через его центр масс, то момент инерции относи­тельно любой другой параллельной оси определяется теоремой Штейнера: момент инерции тела J относительно любой оси вращения равен моменту его инерции Jc относительно параллельной оси, про­ходящей через центр масс С тела, сло­женному с произведением массы mтела на квадрат расстояния а между осями: J = Jc + ma2.

При сравнении законов вращательного и поступательного движений просматрива­ется аналогия между ними, только во вра­щательном движении вместо силы «вы­ступает» ее момент, роль массы играет момент инерции. Какая же величина будет аналогом импульса тела? Ею является момент импульса тела относительно оси.

Моментом импульса (количества дви­жения) материальной точки А относитель­но неподвижной точки О называется физи­ческая величина, определяемая векторным произведением:

L = [ rp | = [ r m v ]. где r — радиус-вектор, проведенный из точки О в точку A; p = m v — импульс ма­териальной точки; L —псевдо­вектор, его направление совпадает с на­правлением поступательного движения правого винта при его вращении от r к p. Моментом импульса относительно не­подвижной оси z называется скалярная величина Lz, равная проекции на эту ось вектора момента импульса, определенного относительно произвольной точки О дан­ной оси. Значение момента импульса Lz не зависит от положения точки О на оси z.

При вращении абсолютно твердого те­ла вокруг неподвижной оси z каждая от­дельная точка тела движется по окружно­сти постоянного радиуса ri с некоторой

скоростью vi. скорость vi; и импульс m ivi

перпендикулярны этому радиусу, т. е. ра­диус является плечом вектора mi v i. Поэто­му можем записать, что момент импульса отдельной частицы

Liz = тiviri (19.1)

Момент импульса твердого тела отно­сительно оси есть сумма моментов импуль­са отдельных частиц:

Используя формулу (17.1) vi = wri, получим

т. е.

Lz = Jzw. (19.2)

Таким образом, момент импульса твердого тела относительно оси равен произведе­нию момента инерции тела относительно той же оси на угловую скорость.

Это выражение - форма урав­нения (закона) динамики вращательного движения твердого тела относительно неподвижной оси: производная момента импульса твердого тела относительно оси равна моменту сил относительно той же оси. В замкнутой системе момент внешних сил М =0 и d L /dt=0, откуда

L = const. (19.4)

Выражение (19.4) представляет собой закон сохранения момента импульса: мо­мент импульса замкнутой системы сохра­няется, т. е. не изменяется с течением времени.

Закон сохранения момента импуль­са — фундаментальный закон природы, Он связан со свойством симметрии про­странства — его изотропностью, т. е. с инвариантностью физических законов отно­сительно выбора направления осей коор­динат системы отсчета (относительно поворота замкнутой системы в простран­стве на любой угол).

 

При вращении твердого тела относительно не­подвижной оси отдельные его элементар­ные объемы массами mi, опишут окружно­сти различных радиусов ri и имеют раз­личные линейные скорости vi. Но так как мы рассматриваем абсолютно твердое те­ло, то угловая скорость вращения этих объемов одинакова:

w = v 1 /r 1 = v 2 /r 2 =... = vn/rn. (17.1)

Кинетическую энергию вращающегося тела найдем как сумму кинетических энер­гий его элементарных объемов:

или

Используя выражение (17.1), получим

где Jz — момент инерции тела относитель­но оси 2. Таким образом, кинетическая энергия вращающегося тела

Tвр = Jzw2/2. (17.2)

Из сравнения формулы (17.2) с вы­ражением (12.1) для кинетической энер­гии тела, движущегося поступательно (T= mv2/2), следует, что момент инерции вращательного движения — мера инер­тности тела. Формула (17.2) справедлива для тела, вращающегося вокруг непод­вижной оси.

В случае плоского движения тела, на­пример цилиндра, скатывающегося с на­клонной плоскости без скольжения, энер­гия движения складывается из энергии поступательного движения и энергии вра­щения:

где m — масса катящегося тела; vc ско­рость центра масс тела; J с момент инерции тела относительно оси, проходя­щей через его центр масс; w — угловая скорость тела.

 

9) Для объяснения петлеобраз­ного движения планет древнегреческий ученый К. Птоломей (II в. н.э.), считая Землю расположенной в центре Вселен­ной, предположил, что каждая из планет движется по малому кругу (эпициклу), центр которого равномерно движется по большому кругу, в центре которого на­ходится Земля. Эта концепция получила название птоломеевой геоцентрической системы мира и при поддержке католиче­ской церкви господствовала почти полто­ры тысячи лет. В начале XVI в. польским астрономом Н. Коперником (1473—1543) обоснована гелиоцентрическая система (см. § 5), сог­ласно которой движения небесных тел объясняются движением Земли (а также других планет) вокруг Солнца и суточным вращением Земли. К началу XVII столетия большинство ученых убедилось, однако, в справ



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2016-04-26 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: