Если сила тока выражается в амперах, напряжение — в вольтах, сопротивление — в омах, то работа тока выражается в джоулях, а мощность — в ваттах. На практике применяются также внесистемные единицы работы тока: ватт-час (Вт•ч) и киловатт-час (кВт•ч). 1 Вт•ч — работа тока мощностью в 1 Вт в течение 1 ч: 1 Вт•ч = 3600 Вт•с = 3,6•103 Дж; 1 кВт•ч=103 Вт•ч = 3,6•106 Дж.
Если ток проходит по неподвижному металлическому проводнику, то вся работа тока идет на его нагревание и, по закону сохранения энергии,
dQ=dA. (99.4)
Таким образом, используя выражения (99.4), (99.1) и (99.2), получим
Выражение (99.5) представляет собой закон Джоуля — Ленца, экспериментально установленный независимо друг от друга Дж. Джоулем и Э. X. Ленцем.
Количество теплоты, выделяющееся за единицу времени в единице объема, называется удельной тепловой мощностью тока. Она равна
w=rj2. (99.6)
Используя дифференциальную форму закона Ома (j =gE) и соотношение r=1/g, получим
w = jE =g E 2. (99.7)
Формулы (99.6) и (99.7) являются обобщенным выражением закона Джоуля — Ленца в дифференциальной форме, пригодным для любого проводника.
Тепловое действие тока находит широкое применение в технике, которое началось с открытия в 1873 г. русским инженером А. Н. Лодыгиным (1847—1923) лампы накаливания. На нагревании, проводников электрическим током основано действие электрических муфельных печей, электрической дуги (открыта русским инженером В. В. Петровым (1761 — 1834)), контактной электросварки, бытовых электронагревательных приборов и т. д.
27)
Если в цепи на носители тока действуют только силы электростатического поля, то происходит перемещение носителей (они предполагаются положительными) от точек с большим потенциалом к точкам с меньшим потенциалом. Это приведет к выравниванию потенциалов во всех точках цепи и к исчезновению электрического поля. Поэтому для существования постоянного тока необходимо наличие в цепи устройства, способного создавать и поддерживать разность потенциалов за счет работы сил неэлектростатического происхождения. Такие устройства называются источниками тока. Силы неэлектростатического происхождения, действующие на заряды со стороны источников тока, называются сторонними.
|
Природа сторонних сил может быть различной. Например, в гальванических элементах они возникают за счет энергии химических реакций между электродами и электролитами; в генераторе — за счет механической энергии вращения ротора генератора и т. п. Роль источника тока в электрической цепи, образно говоря, такая же, как роль насоса, который необходим для перекачивания жидкости в гидравлической системе. Под действием создаваемого поля сторонних сил электрические заряды движутся внутри источника тока против сил электростатического поля, благодаря чему на концах цепи поддерживается разность потенциалов и в цепи течет постоянный электрический ток.
Сторонние силы совершают работу по перемещению электрических зарядов. Физическая величина, определяемая работой, совершаемой сторонними силами при перемещении единичного положительного заряда, называется электродвижущей силой (э. д. с.) ξ, действующей в цепи:
ξ=A/Q 0. (97.1)
Эта работа производится за счет энергии, затрачиваемой в источнике тока, поэтому величину ξможно также называть электродвижущей силой источника тока, включенного в цепь. Напряжением U на участке 1 — 2 называется физическая величина, определяемая работой, совершаемой суммарным полем электростатических (кулоновских) и сторонних сил при перемещении единичного положительного заряда на данном участке цепи.U12=j1-j2+ξ12.
|
Понятие напряжения является обобщением понятия разности потенциалов: напряжение на концах участка цепи равно разности потенциалов в том случае, если на этом участке не действует э.д.с., т. е. сторонние силы отсутствуют.
Закон Ома
Теперь рассмотрим неоднородный участок цепи, где действующую э.д.с. на участке 1 — 2 обозначим через ξ12, а приложенную на концах участка разность потенциалов — через
j1-j2.
Если ток проходит по неподвижным проводникам, образующим участок 1 — 2, то работа A 12всех сил (сторонних и электростатических), совершаемая над носителями тока, по закону сохранения и превращения энергии равна теплоте, выделяющейся на участке. Работа сил, совершаемая при перемещении заряда Q0 на участке 1 — 2, согласно (97.4),
A 12 =Q0ξ12 + Q 0 (j 1 -j2). (100.1)
Э.д.с. ξ12, как и сила тока I,— величина скалярная. Ее необходимо брать либо с положительным, либо с отрицательным знаком в зависимости от знака работы, совершаемой сторонними силами. Если
э.д.с. способствует движению положительных зарядов в выбранном направлении (в направлении 1 — 2), то ξ12>0. Если э.д.с. препятствует движению положительных зарядов в данном направлении, то
ξ12<0.
За время t в проводнике выделяется теплота (см. (99.5))
Q=I2Rt=IR(It)=IRQ0. (100.2) Из формул (100.1) и (100.2) получим
|
Выражение (100.3) или (100.4) представляет собой закон Ома для неоднородного участка цепи в интегральной форме, который является обобщенным законом Ома.
Если на данном участке цепи источник тока отсутствует (ξ12=0), то из (100.4) приходим к закону Ома для однородного участка цепи (98.1):
I =(j1-j2)/ R = U / R
(при отсутствии сторонних сил напряжение на концах участка равно разности потенциалов (см. §97)). Если же электрическая цепь замкнута, то выбранные точки 1 и 2 совпадают, j1=j2; тогда из (100.4) получаем закон Ома для замкнутой цепи:
I=ξ/R,
где ξ — э.д.с., действующая в цепи, R — суммарное сопротивление всей цепи. В общем случае R = r+R 1,где r — внутреннее сопротивление источника э.д.с., R 1 — сопротивление внешней цепи. Поэтому закон Ома для замкнутой цепи будет иметь вид
I=ξ/(r+R1).
Если цепь разомкнута и, следовательно, в ней ток отсутствует (I=0), то из закона Ома (100.4) получим, что ξ12=j2-j1 т. е. э.д.с., действующая в разомкнутой цепи, равна разности потенциалов на ее концах. Следовательно, для того чтобы найти э.д.с. источника тока, надо измерить разность потенциалов на его клеммах при разомкнутой цепи.
Правило Кирхгофа
Обобщенный закон Ома (см. (100.3)) позволяет рассчитать практически любую сложную цепь. Однако непосредственный расчет разветвленных цепей, содержащих несколько замкнутых контуров (контуры могут иметь общие участки, каждый из контуров может иметь несколько источников э.д.с. и т. д.), довольно сложен. Эта задача решается более просто с помощью двух правил Кирхгофа.
Любая точка разветвления цепи, в которой сходится не менее трех проводников с током, называется узлом. При этом ток, входящий в узел, считается положительным, а ток, выходящий из узла,— отрицательным.
Первое правило Кирхгофа: алгебраическая сумма токов, сходящихся в узле, равна нулю:
Первое правило Кирхгофа вытекает из закона сохранения электрического заряда. Действительно, в случае установившегося постоянного тока ни в одной точке проводника и ни на одном его участке не должны накапливаться электрические заряды. В противном случае токи не могли бы оставаться постоянными.
I 1 R 1 -I 2 R 2 +I 3 R 3 = ξ 1 - ξ 2 + ξ 3. (101.1)
Уравнение (101.1) выражает второе правило Кирхгофа: в любом замкнутом контуре, произвольно выбранном в разветвленной электрической цепи, алгебраическая сумма произведений сил токов Ii, на сопротивления Ri соответствующих участков этого контура равна алгебраической сумме э.д.с. ξ k, встречающихся в этом контуре:
28) подобно тому, как в пространстве, окружающем электрические заряды, возникает электростатическое поле, так в пространстве, окружающем токи и постоянные магниты, возникает силовое поле, называемое магнитным. Наличие магнитного поля обнаруживается по силовому действию на внесенные в него проводники с током или постоянные магниты. Название «магнитное поле» связывают с ориентацией магнитной стрелки под действием поля, создаваемого током (это явление впервые обнаружено датским физиком X. Эрстедом (1777—1851)).
Электрическое поле действует как на неподвижные, так и на движущиеся в нем электрические заряды. Важнейшая особенность магнитного поля состоит в том, что оно действует только на движущиеся в этом поле электрические заряды. Опыт показывает, что характер воздействия магнитного поля на ток различен в зависимости от формы проводника, по которому течет ток, от расположения проводника и от направления тока. Следовательно, чтобы охарактеризовать магнитное
поле, надо рассмотреть его действие на определенный ток.
Подобно тому, как при исследовании электростатического поля использовались точечные заряды, при исследовании магнитного поля используется замкнутый плоский контур с током (рамка с током), размеры которого малы по сравнению с расстоянием до токов, образующих магнитное поле. Ориентация контура в пространстве характеризуется направлением нормали к контуру. В качестве положительного направления нормали принимается направление, связанное с током правилом правого винта, т. е. за положительное направление нормали принимается направление поступательного движения винта, головка которого вращается в на-
правлении тока, текущего в рамке (рис. 160).
Опыты показывают, что магнитное поле оказывает на рамку с током ориентирующее действие, поворачивая ее определенным образом. Этот результат связывается с определенным направлением магнитного поля. За направление магнитного поля в данной точке принимается направление, вдоль которого располагается положительная нормаль к рамке (рис. 161). За направление магнитного поля может быть также принято направление, совпадающее с направлением силы, которая действует
на северный полюс магнитной стрелки, помещенной в данную точку. Так как оба полюса магнитной стрелки лежат в близких точках поля, то силы, действующие на оба полюса, равны друг другу. Следовательно, на магнитную стрелку действует пара сил, поворачивающая ее так, чтобы ось стрелки, соединяющая южный полюс с северным, совпадала с направлением поля.
Рамкой с током можно воспользоваться также и для количественного описания магнитного поля. Так как рамка с током испытывает ориентирующее действие поля, то на нее в магнитном поле действует пара сил. Вращающий момент сил зависит как от свойств поля в данной точке, так и от свойств рамки:
М =[ р m В ], (109.1)
где В — вектор магнитной индукции, являющейся количественной характеристикой магнитного поля, рm — вектор магнитного момента рамки с током. Для плоского контура с током I
p m = I S n, (109.2)
где S — площадь поверхности контура (рамки), n —единичный вектор нормали к поверхности рамки. Направление р m
совпадает, таким образом, с направлением положительной нормали.
Магнитная индукция в данной точке однородного магнитного поля определяется максимальным вращающим моментом, действующим на рамку с магнитным моментом, равным единице, когда нормаль к рамке перпендикулярна направлению поля. Следует отметить, что вектор В может быть выведен также из закона Ампера (см. §111) и из выражения для силы Лоренца (см. § 114).
Так как магнитное поле является силовым, то его, по аналогии с электрическим, изображают с помощью линий магнитной индукции — линий, касательные к которым в каждой точке совпадают с направлением вектора В. Их направление задается правилом правого винта: головка винта, ввинчиваемого по направлению тока, вращается в направлении линий магнитной индукции.
Линии магнитной индукции всегда замкнуты и охватывают проводники с током. Этим они отличаются от линий напряженности электростатического поля, которые являются разомкнутыми (начинаются на положительных зарядах и кончаются на отрицательных (см. §79)).
На рис. 163 изображены линии магнитной индукции полосового магнита; они выходят из северного полюса и входят в южный. Вначале казалось, что здесь наблюдается полная аналогия с линиями напряженности электростатического поля и полюсы магнитов играют роль магнитных «зарядов» (магнитных монополей). Опыты показали, что, разрезая магнит на части, его полюсы разделить нельзя, т. е. в отличие от электрических зарядов свободные магнитные «заряды» не существуют, поэтому линии магнитной индукции не могут обрываться на полюсах. В дальнейшем было установлено, что внутри полосовых магнитов имеется магнитное поле, аналогичное полю внутри соленоида, и линии магнитной индукции этого магнитного поля являются продолжением линий магнитной индукции вне магнита. Таким образом, линии магнитной индукции магнитного поля постоянных магнитов являются также замкнутыми.
Вектор магнитной индукции В характеризует результирующее магнитное поле, создаваемое всеми макро- и микротоками, т. е. при одном и том же токе и прочих равных условиях вектор В в различных средах будет иметь разные значения.
Магнитное поле макротоков описывается вектором напряженности Н. Для однородной изотропной среды вектор магнитной индукции связан с вектором напряженности следующим соотношением:
В =m0m Н, (109.3)
где m0 — магнитная постоянная, m — безразмерная величина — магнитная проницаемость среды, показывающая, во сколько раз магнитное поле макротоков Н усиливается за счет поля микротоков среды. Сравнивая векторные характеристики электростатического (Е и D) и магнитного (В и Н) полей, укажем, что аналогом вектора напряженности электростатического поля Е является вектор магнитной индукции В, так как векторы Е и В определяют силовые действия этих полей и зависят от свойств среды. Аналогом вектора электрического смещения D является вектор напряженности Н магнитного поля.
Закон био-савара-лапласса
Магнитное поле постоянных токов различной формы изучалось французскими учеными Ж. Био (1774—1862) и Ф. Саваром (1791 —1841). Результаты этих опытов были обобщены выдающимся французским математиком и физиком П. Лапласом.
Закон Био — Савара — Лапласа для проводника с током I, элемент которого d l создает в некоторой точке А (рис. 164) индукцию поля d B, записывается в виде
где d l — вектор, по модулю равный длине d l элемента проводника и совпадающий по направлению с током, r — радиус-вектор, проведенный из элемента d l проводника в точку А поля, r — модуль радиуса-вектора г. Направление d B перпендикулярно d l и r, т. е. перпендикулярно плоскости, в которой они лежат, и совпадает с касательной к линии магнитной индукции. Это направление может быть найдено по правилу нахождения линий магнитной индукции (правилу правого винта): направление вращения головки винта дает направление d B, если поступательное движение винта соответствует направлению тока в элементе. Для магнитного поля, как и для электрического, справедлив принцип суперпозиции: магнитная индукция результирующего поля, создаваемого несколькими токами или движущимися зарядами, равна векторной сумме магнитных индукций складываемых полей, создаваемых каждым током или движущимся зарядом в отдельности:
Циркуляция вектора
Циркуляцией вектора В по заданному замкнутому контуру называется интеграл
где d l — вектор элементарной длины контура, направленной вдоль обхода контура, В 1= В cosa — составляющая вектора В в направлении касательной к контуру (с учетом выбранного направления обхода), а — угол между векторами В и d l.
Закон полного тока для магнитного поля в вакууме (теорема о циркуляции вектора В): циркуляция вектора В по произвольному замкнутому контуру равна произведению магнитной постояннойm0 на алгебраическую сумму токов, охватываемых этим контуром:
где n — число проводников с токами, охватываемых контуром L произвольной формы. Каждый ток учитывается столько раз, сколько раз он охватывается контуром. Положительным считается ток, направление которого связано с направлением обхода по контуру правилом правого винта; ток противоположного направления считается отрицательным.
29) Потоком вектора магнитной индукции (магнитным потоком) через площадку d S называется скалярная физическая величина, равная
dФB= B d S =Bn dS, (120.1)
где Bn=В cosa — проекция вектора В на направление нормали к площадке dS (a — угол между векторами n и В), d S =dS n — вектор, модуль которого равен dS, а направление совпадает с направлением нормали n к площадке. Поток вектора В может быть как положительным, так и отрицательным в зависимости от знака cosa (определяется выбором положительного направления нормали n). Обычно поток вектора В связывают с определенным контуром, по которому течет ток. В таком случае положительное направление нормали к контуру нами уже определено (см. §109): оно связывается с током правилом правого винта. Таким образом, магнитный поток, создаваемый контуром через поверхность, ограниченную им самим, всегда положителен.
Поток вектора магнитной индукции ФB через произвольную поверхность S равен
единица магнитного потока вебер (Вб): 1 Вб — магнитный поток, проходящий через плоскую поверхность площадью 1 м2, расположенную перпендикулярно однородному магнитному полю, индукция которого равна 1 Тл (1 Вб=1 Тл•м2).
Теорема Гаусса для поля В: поток вектора магнитной индукции через любую замкнутую поверхность равен нулю:
Эта теорема отражает факт отсутствия магнитных зарядов, вследствие чего линии магнитной индукции не имеют ни начала, ни конца и являются замкнутыми.
Электромагнитная индукция
Электрические токи создают вокруг себя магнитное поле. Связь магнитного поля с током привела к многочисленным попыткам возбудить ток в контуре с помощью магнитного поля. Эта фундаментальная задача была блестяще решена в 1831 г. английским физиком М. Фарадеем, открывшим явление электромагнитной индукции, заключающееся в том, что в замкнутом проводящем контуре при изменении потока магнитной индукции, охватываемого этим контуром, возникает электрический ток, получивший название индукционного.
Рассмотрим классические опыты Фарадея, с помощью которых было обнаружено явление электромагнитной индукции.
Опыт 1. Если в замкнутый на гальванометр соленоид вдвигать или выдвигать постоянный магнит, то в моменты его вдвигания или выдвигания наблюдается отклонение стрелки гальванометра (возникает индукционный ток); направления отклонений стрелки при вдвигании и выдвигании магнита противоположны. Отклонение стрелки гальванометра тем больше, чем больше скорость движения магнита относительно катушки. При изменении полюсов магнита направление отклонения стрелки изменится. Для получения индукционного тока магнит можно оставлять неподвижным, тогда нужно относительно магнита передвигать соленоид.
Опыт II. Концы одной из катушек, вставленных одна в другую, присоединяются к гальванометру, а через другую катушку пропускается ток. Отклонение стрелки гальванометра наблюдается в моменты включения или выключения тока, в моменты его увеличения или уменьшения или при перемещении катушек друг относительно друга. Направления отклонений стрелки гальванометра также противоположны при включении и выключении тока, его увеличении и уменьшении, сближении. и удалении катушек.
Обобщая результаты своих многочисленных опытов, Фарадей пришел к выводу, что индукционный ток возникает всегда, когда происходит изменение сцепленного с контуром потока магнитной индукции. Например, при повороте в однородном магнитном поле замкнутого проводящего контура в нем также возникает индукционный ток. В данном случае индукция магнитного поля вблизи проводника остается постоянной, а меняется только поток магнитной индукции через площадь контура.
Опытным путем было также установлено, что значение индукционного тока совершенно не зависит от способа изменения потока магнитной индукции, а определяется лишь скоростью его изменения (в опытах Фарадея также доказывается, что отклонение стрелки гальванометра (сила тока) тем больше, чем больше скорость движения магнита, или скорость изменения силы тока, или скорость движения катушек).
Открытие явления электромагнитной индукции имело большое значение, так как была доказана возможность получения электрического тока с помощью магнитного поля. Этим была установлена взаимосвязь между электрическими и магнитными явлениями, что послужило в дальнейшем толчком для разработки теории электромагнитного поля.
30) Закон Фарадея можно сформулировать еще таким образом: э.д.с. ξ i электромагнитной индукции в контуре численно равна и противоположна по знаку скорости изменения магнитного потока сквозь поверхность, ограниченную этим контуром. Этот закон является универсальным: э.д.с. ξ i не зависит от способа изменения магнитного потока.
Э.д.с. электромагнитной индукции выражается в вольтах.
Правило Ленца: индукционный ток в контуре имеет всегда такое направление, что создаваемое им магнитное поле препятствует изменению магнитного потока, вызвавшего этот индукционный ток.