ФУНКЦИОНАЛЬНЫЕ СИСТЕМЫ ПОДДЕРЖАНИЯ КОНСТАНТ КРОВИ.




ЛЕКЦИЯ 4.

План.

1. Функциональная система регуляции объёма циркулирующей крови.

2. Функциональная система регуляции осмотического давления. Роль поведения в сохранении водного баланса и осмотического давления.

3. Характеристика параметров результата: оптимального количества форменных элементов, аппарата контроля, центров и исполнительных органов. Способы достижения оптимального результата.

4. Понятие агрегатного состояния крови. Ключевые факторы, определяющие оптимальный баланс активности системы свёртывания крови и противосвёртывающей. Характеристика аппарата контроля и центров регуляции.

 

1. Для нормального кровоснабжения органов и тканей, поддержания постоянства АД необходимо определенное соотношение между объемом циркулирующей крови(ОЦК) и общей емкостью всей сосудистой системы. Это соответствие достигается при помощи ряда нервных и гуморальных регуляторных механизмов.

Волюморецепторы ((рецепторы растяжения, реагирующие на изменение ОЦК и интерстициальной жидкости) локализованы в артериальной и венозной системах – в зонах низкого и высокого давления.

В стенке левого предсердия имеются волюморецепторы – рецепторы растяжения.При увеличении притока венозной крови по легочным венам стенка левого предсердия растягивается, возбуждая волюморецепторы, в результате чего возникает залп импульсов, идущих по афферентным волокнам вагуса. Эти импульсы достигают сосудистого центра, в результате чего снижается деятельность сердца и в малый круг кровообращения идёт меньше крови, одновременно они достигают супраоптического ядра гипоталамуса – уменьшается секреция антидиуретического гормона (АДГ) возрастает диурез, что приводит к нормализации ОЦК.

Часть волюморецепторов расположена в каратиноидном синусе и в области дуги аорты. При уменьшении артериального давления эти рецепторы возбуждаются и повышают секрецию АДГ: в результате ОЦК возрастает. Однако, как полагает Ю.В. Наточнин (1982), аортальные барорецепторы (волюморецепторы) менее чувствительны, чем волюморецепторы левого предсердия.

При кровопотере приток крови к сердцу уменьшается и уровень АД снижается. В ответ на это возникают реакции, направленные на восстановление нормального уровня АД. Прежде всего происходит рефлекторное сужение артерий. Кроме того, при кровопотере наблюдается рефлекторное усиление секреции сосудосуживающих гормонов: адреналина - мозговым слоем надпочечников и вазопрессина - задней долей гипофиза, а усиление секреции этих веществ приводит к сужению артериол.

Помимо симпатоадреналовых влияний и действия вазопрессина, в поддержании АД и ОЦК на нормальном уровне при кровопотере, особенно в поздние сроки, участвует система ренин-ангиотензин-альдостерон.

Возникающее после кровопотери снижение кровотока в почках приводит к усиленному выходу ренина и большему, чем в норме, образованию ангиотензина II, который поддерживает АД. Кроме того, ангиотензин II стимулирует выход из коркового вещества надпочечников альдостерона, который, во-первых, способствует поддержанию АД за счет увеличения тонуса симпатического отдела вегетативной нервной системы, а во-вторых, усиливает реабсорбцию в почках натрия. Задержка натрия является важным фактором увеличения реабсорбции воды в почках и восстановления ОЦК.

Для поддержания АД при открытых кровопотерях имеет значение также переход в сосуды тканевой жидкости и в общий кровоток того количества крови, которое сосредоточено в так называемых кровяных депо. Выравниванию давления крови способствует также рефлекторное учащение и усиление сокращений сердца. Благодаря этим нейрогуморальным влияниям при быстрой потере 20—25% крови некоторое время может сохраняться достаточно высокий уровень АД.

Существует, однако, некоторый предел потери крови, после которого никакие регуляторные приспособления (ни сужение сосудов, ни выбрасывание крови из депо, ни усиленная работа сердца и т. д.) не могут удержать АД на нормальном уровне: если организм быстро теряет более 40 - 50% содержащейся в нем крови, то АД резко понижается и может упасть до нуля, что приводит к смерти.

Изменение объема крови воспринимается волюморецепторами сердца, устья легочных вен, вен конечностей, каротидного синуса и посылается в нервный центр, расположенный в гипоталамусе, где формируется программа действия. Сформировавшаяся программа поступает от нервного центра по симпатическим и парасимпатическим нервам и в виде гормонов (адреналина, норадреналина, альдостерона, антидиуретического гормона) к сердцу и сосудам, органам депо крови (печень, селезенка, кожа, легкие, почки, мышцы), пищеварительным железам, всасывательному аппарату желудка и кишечника.

Указанные механизмы регуляции сосудистого тонуса являются безусловными, врожденными, но в течение индивидуальной жизни человекаи животных на их основе вырабатываются сосудистые условные рефлексы, благодаря которым сердечно-сосудистая система включается в реакции, необходимые организму при действии лишь одного сигнала, предшествующего тем или иным изменениям окружающей среды. Таким образом организм оказывается заранее приспособленным к предстоящей деятельности.

2. Осмотическое давление крови, лимфы и тканевой жидкости имеет большое значение в регуляции обмена воды между кровью и тканями.

Осмотическим давлением называется сила, обеспечивающая движение растворителя через полупроницаемую мембрану в сторону большей концентрации. Для крови эта величина – 7,6 атм. или 290 - 300 мосмоль/кг воды.

Осмотическое давление обеспечивается, главным образом, неорганическими веществами плазмы.

Часть осмотического давления, создаваемого белками, называется "онкотическое давление". Обеспечивается, прежде всего, альбуминами.

Онкотическое давление плазмы крови больше, чем межклеточной жидкости, поскольку в последний значительно ниже содержание белков. Благодаря большей онкотического давления в плазме крови вода из межклеточной жидкости возвращается в кровь. За сутки в кровеносной системе выделяется до 20 л жидкости. 2-4 л ее в виде лимфы возвращаются лимфатическими сосудами в кровеносную систему. При уменьшении онкотического давления развиваются отеки. Это, прежде всего, обусловлено тем, что вода не удерживается в кровяном русле

Растворы, которые имеют одинаковый с кровью осмотическое давление, называются изотоническими. Таким раствором является 0,9% раствор NaCl. Он называется физиологическим раствором. Растворы, которые имеют большее осмотическое давление, называются гипертоническими, меньше - гипотоническими.

Если клетки крови поместить в гипертонический раствор, из них «уходит» вода, они уменьшаются в объеме это явление называется плазмолиз.

Еслиже клетки крови поместить в гипотонический раствор, вода в избыточном количестве поступает в них. Клетки (прежде всего эритроциты) увеличиваются в объеме и разрушаются. Это явление называется гемолиз (осмотическое).

Способность эритроцитов сохранять целостность мембраны в гипотоническом растворе называется осмотическая резистентность эритроцитов. Для ее определения эритроциты вносят в ряд пробирок с 0,2-0,8% растворами NaCl. При осмотической резистентности гемолиз эритроцитов начинается в 0,45-0,52% растворе NaCI (минимальная осмотическая резистентность) 50% лизис происходит в 0,40-0,42% растворе NaCl, а полный лизис - в 0,28-0,35% растворе NaCI (максимальная осмотическая резистентность).

Регулирования осмотического давления происходит преимущественно с помощью механизмов жажды и секреции АДГ.

На основе афферентации к центру осморегуляции, расположенному в гипоталамусеот осморецепторовв супраоптическом ядре гипоталамуса (передняя группа), а также в печени, почках, сердце, приходит группа импульсов, под влиянием которых в аденогипофизе происходит выброс антидиуретического гормона, окситоцина, что приводит к изменению реабсорбции воды в собирательных трубках почек и за счет этого достигается нормализация осмотического давления крови. Такое явление возникает при обезвоживании. При большом потреблении воды осмолярность плазмы снижается, и продукция АДГ почти прекращается, в результате возрастает диурез и снижается осмолярность мочи.

Продукция АДГ достаточно легко может возрастать под влиянием болевого раздражения – наступает болевая анурия, так как АДГ увеличивает реабсорбцию воды в собирательных трубках.

Учитывая, что основным ионом, создающим осмотическое давление, является натрий, одновременно происходит регуляция его содержания в крови с участием ренин-ангиотензин-альдостеронового механизма и за счет натрийуретического гормона (атриопептина).

Регуляция ионного состава крови имеет прямое отношение к регуляции осмотического давления, волюморегуляции, но она предназначена и для отдельных ионов, независимо от уровня осмотического давления и ОЦК. Рецепторы, воспринимающие уровень ионов: натриевые, калиевые, кальциевые, хлорные - в основном расположены в печени, а также, вероятно, в гипоталамусе. Информация достигает центра регуляции ионного состава крови, который расположен в гипоталамусе, от него сигналы управления идут к железам внутренней секреции, в том числе к коре надпочечников (выделение альдостерона), поджелудочной железы (инсулин).

Кроме того, кровь непосредственно оказывает влияние на железы внутренней секреции, продуцирующие ионрегулирующие гормоны, в том числе на почки (ренин-ангиотензин-альдостероновый механизм), щито­видную и паращитовидную железы (паратгормон, тиреокальцитонин), предсердие (натрийуретический гормон.

Раздражение осморецепторов вызывает рефлекторное изменение деятельности выделительных органов, и они удаляют избыток воды или солей, поступивших в кровь. Большое значение в этом отношении имеет кожа, соединительная ткань которой впитывает избыток воды из крови или отдает ее в кровь при повышении осмотического давления последней

3. Поддержание относительного постоянства состава периферической крови, так же, как и его колебания при воздействии различных физиологических факторов, осуществляется благодаря взаимодействию нескольких процессов - кроветворения, кроверазрушения и перераспределения. Координация этих процессов связана с наличием специальной системы регуляции. Эта система обеспечивает приспособительные реакции крови как на изменения внутренней среды организма, так и на различного рода влияния извне. Нервный и гуморальный пути регуляции могут оказывать свое воздействие на любое из звеньев, формирующих картину крови.

Роль нервной системы в регуляции системы крови.

Участие НС в перераспределительных реакциях подтверждается опытами, в которых анестезия предотвращает такие реакции, как возникновение местного лейкоцитоза при болевом раздражении, раздражении брюшины, механическом раздражении слизистой желудка, поверхности печени и т.п. Четкие изменения состава периферической крови отмечаются и при введении медиаторов НС (адреналина и ацетилхолина). Так, инъекция адреналина приводит к возникновению кратковременного лейкоцитоза.

Значительно сложнее вопрос о влиянии нервной системы непосредственно на кроветворение. Многочисленные клинические наблюдения над изменениями состава крови при различных поражениях ЦНС явились основой для представления о существовании центральной регуляции кроветворения.

При раздражении гипоталамуса стимуляция ядер симпатической НС приводит к ретикулоцитозу и эритропении, а разрушение этих ядер тормозит регенерацию крови после кровопотери. Гипоталамус участвует в регуляции образования гемопоэтинов.

Кора больших полушарий также оказывает свое влияние на состав крови и кроветворения. При удалении одного или обеих полушарий у животных развивается анемия и умеренно выраженный нейтрофильный лейкоцитоз. Одновременно тормозится регенерация крови в ответ на постгеморрагическую или гемолитическую анемию.

При неврозах в клинике и в эксперименте могут развиваться анемии. Возможна выработка условных рефлексов в системе крови (условно-рефлекторный пищевой лейкоцитоз).

Все эти исследования, хотя и свидетельствуют о возможном влиянии ЦНС на систему крови, но не раскрывают путей реализации этих воздействий. Можно полагать, что они осуществляются посредством изменения функционального состояния межуточного мозга, что приводит к изменениям деятельности эндокринных желез, обмена веществ, сосудистого тонуса и т.п.

Несомненное влияние на систему крови оказывают и нижележащие отделы НС. Это доказано многочисленными экспериментами с перерезкой спинного мозга на различных уровнях. При перерезке шейного и грудного отделов наблюдается развитие анемии, ретикулоцитопении и нейтрофильного лейкоцитоза. В костном мозге в этих случаях снижается количество эритробластов.

Нервные волокна, регулирующие кроветворение, выходят из спинного мозга на уровне D3-L3 сегментов. Симпатическая иннервация стимулирует кроветворение, парасимпатическая тормозит. Однако, при определенных условиях эти эффекты модифицируются и оба отдела ВНС могут оказывать на кроветворение одинаковое действие. Можно считать доказанным, что парасимпатикус влияет более на лейкопоэз, чем на эритропоэз.

Следует отметить, что в особой зависимости от нормального функционального состояния НС находится эритрон. Выключение определенных рефлексогенных зон (синокаротидная, аортальная), денервация внутренних органов (печень, селезенка, почки), перерезка некоторых периферических нервов (седалищный, бедренный) закономерно вызывают анемию у экспериментальных животных.

Существует два пути регулирующего влияния НС на систему крови - прямой и косвенный с участием гуморальных посредников.

Подтверждением наличия прямого пути является наличие иннервации костного мозга, причем костный мозг является и источником афферентной импульсации, т.е. связь двусторонняя.

Вместе с тем велика и роль гуморальных посредников между НС и системой крови (опыты на парабионтах). Эти гуморальные стимуляторы кроветворения получили наименование гемопоэтины. Под гемопоэтинами подразумевают вещества, которые вырабатываются в организме и обладают способностью стимулировать кроветворение. В зависимости от точки приложения их действия различают эритропоэтины, лейкопоэтины и тромбопоэтины.

Эритропоэтин. Наиболее изученным среди факторов, стимулирующих кроветворение, является эритропоэтин. Учение об эритропоэтинах возникло на основе опытов Карно и Дефландера, которые обнаружили в 1906 г., что сыворотка кроликов с анемией обладает способностью стимулировать эритропоэз при введении ее интактным животным.

Эритропоэтины образуются не только после острой кровопотери, но и при массивном разрушении эритроцитов при фенилгидразиновом отравлении, при снижении содержания кислорода в воздухе, при любой гипоксии.

Использование чувствительных методов обнаружения эритропоэтина показало наличие его в плазме здоровых людей. Это позволяет считать его физиологическим стимулятором эритропоэза. При патологических условиях наблюдается лишь усиление интенсивности его образования. Исключение составляют лишь анемии у больных с заболеваниями почек. Это обусловлено той особой ролью, которая приписывается почкам в формировании эритропоэтина.

При двусторонней нефрэктомии выработка эритропоэтина прекращается. Эксплантация собственной почки больному животному восстанавливает синтез эритропоэтина. Это связано с тем, что эритропоэтин синтезируется особыми клетками в т.н. юкста -гломерулярном аппарате почки. Действуя на костный мозг,эритропоэтин стимулирует в нем дифференциацию основных стволовых клеток с сторону эритробластического ряда. Возможно его стимулирующее действие и на скорость созревания эритробластов и нормобластов. По своей химической природе эритропоэтин относится к гликопротеидам. Он имеет специфическую антигенную структуру, термостабилен и не связан с крупнодисперсными белками.

Лейкопоэтины. Вопрос о лейкопоэтинах изучен несравненно меньше. Безлейкоцитарная плазма обладает способностью вызывать лейкоцитоз при парэнтеральном введении интактным животным. Лейкоцитоз появляется вскоре после инъекции и достигает максимума через 4-6 часов. Механизм действия лейкопоэтинов аналогичен влиянию эритропоэтинов, т.е. они стимулируют дифференциацию основных клеток костного мозга в сторону гранулоцитопоэза. Химический состав лейкопоэтинов не изучен.

Тромбопоэтины - их наличие доказано, но механизм действия и место выработки неизвестно.

Помимо стимуляторов кроветворения, в настоящее время придается определенное значение факторам, обладающим противоположной активностью. Получены данные о повышенном образовании ингибиторов эритропоэза при заболеваниях почек, при экспериментальной полицитемии, при анемиях после перерезки некоторых нервов. Однако этот раздел физиологии регуляции крови только начинает развиваться.

Роль желез внутренней секреции в регуляции системы крови.

Наряду со специфической регуляцией системы крови, которая осуществляется посредством гемопоэтинов, и, возможно, веществ с ингибиторными свойствами, имеется немало данных об участии в этом процессе различных желез внутренней секреции.

Гипофиз. Установлено, что гипофизэктомия приводит к анемии и гипоплазии костного мозга. Несомненное влияние на систему крови оказывают и отдельные гормоны гипофиза (АКТГ и СТГ). Применение СТГ приводит к усилению пролиферации всех костномозговых элементов с нарастанием в крови числа эритроцитов и лейкоцитов на единицу веса. При этом СТГ действует непосредственно на костный мозг, а АКТГ - через глюкокортикоиды.

Надпочечники. О возможности влияния глюкокортикоидов на систему крови свидетельствуют многочисленные клинические наблюдения, указывающие на тенденцию к эритроцитозу и нейтрофильному лейкоцитозу у больных с синдромом Иценко-Кушинга.

Применение глюкортикоидов у больных с не гематологическими заболеваниями сопровождается увеличением числа ретикулоцитов, эритроцитов и лейкоцитов. Аналогичные изменения обнаруживаются у животных при введении кортизона.

В то же время адреналэктомия приводит к развитию анемии и увеличению в крови абсолютного количества лимфоцитов. Все эти эффекты связаны со способностью глюкокортикоидов стимулировать эритро- и гранулопоэз и тормозить продукцию лимфоцитов из-за развивающейся гипоплазии лимфоидного аппарата.

Эозинопения, нередко отмечающаяся при введении глюкокортикоидов, обычно связывается с перераспределением эозинофилов.

Длительное применение АКТГ может приводить к гипоплазии костного мозга из-за торможения митотической активности костномозговых элементов.

Действие минералокортикоидов на систему крови осуществляется через изменения объема циркулирующей жидкой части крови.

Определенные изменения состава крови возникают и при введении гормонов мозгового слоя надпочечников (адреналина и норадреналина). Они выражаются в кратковременной полиглобулии при отсутствии существенных нарушений в лейкоцитарной формуле. Развитие полиглобулии обусловлено перераспределением форменных элементов, уменьшением количества депонированных клеток крови в печени, селезенке, легких и других паренхиматозных органах при одновременном усилении выхода зрелых сегментоядерных нейтрофилов из синусов костного мозга в кровь.

Половые железы. Половые различия в составе крови известны. Показано, что применение женских половых гормонов, эстрогенов, у людей и животных приводит к развитию панцитопении, особенно анемии. Применение малых доз эстрогенов оказывает стимулирующее действие на гранулоцитопоэз, при больших дозах отмечается аплазия гранулопоэза и лимфопоэза.

Введение мужских половых гормонов, андрогенов, оказывает противоположное действие, выражающееся в появлении полиглобулии и гиперплазии костного мозга.

Щитовидная железа. Менее определенное действие на систему крови оказывают гормоны щитовидной железы. При гиперфункции ее нередко развивается лейкопения, связанная с уменьшением абсолютного количества нейтрофилов. Абсолютное же количество лимфоцитов увеличивается, одновременно с увеличением размеров тимуса и лимфатических органов.

Более закономерным является развитие анемии при гипофункции щитовидной железы. Количество лейкоцитов и тромбоцитов не меняется. Изменения кроветворения при нарушениях функции щитовидной железы не являются специфическими. Их появление связано с изменением темпа обменных процессов в организме, нарушением витаминного баланса и, возможно, нарушением всасывания необходимых для кроветворения веществ в ЖКТ.

Тимус (з обная железа). Установлено, что зобная железа имеет непосредственное отношение к регуляции развития лимфоидного аппарата. Удаление тимуса у новорожденных мышей приводит к задержке развития лимфоидного аппарата вплоть до его атрофии. Одновременно у животных отмечается повышенная чувствительность к инфекции в связи со снижением способности вырабатывать антитела. Менее изученным является влияние зобной железы на эритропоэз.

В физиологических условиях у взрослых людей тимус не может принимать существенного участия в регуляции кроветворения из-за возрастной инволюции этой железы.

Прочие регулирующие влияния на систему крови.

Внутренние органы. Помимо эндокринных желез, к регуляции системы крови имеют отношение такие органы, как селезенка и легкие. Они являются депо крови, в селезенке происходит разрушение элементов крови. При этом в селезенке разрушаются только старые, качественно измененные клетки.

Большую роль играет селезенка и в стимуляции эритропоэза (продукты распада эритроцитов стимулируют созревание новых клеток) и лейкопоэза(удаление селезенки приводит к лимфоцитозу, эозинофилии и моноцитозу), а также тромбоцитопоэза.

Продукты распада форменных элементов крови играют определенную роль в регуляции системы крови, так как симулируют свой росток. Терапевтический эффект переливания эритроцитарной и лейкоцитарной массы во многом связан с этим свойством, поскольку время циркуляции перелитых клеток, особенно лейкоцитов, невелико.

Влияние питания. Функциональная активность гемопоэза во многом определяется характером питания. Длительное белковое голодание приводит к развитию лейкопении и анемии. Из других алиментарных факторов в регуляции кроветворения, особенно эритропоэза, придается значение некоторым микроэлементам (железо, кобальт, медь).

Роль витаминов в эритропоэзе здорового человека определяется, с одной стороны, их участием в качестве коферментов на различных этапах синтеза гема, а с другой стороны, тем существенным значением, которое они имеют в процессе образования глобина.

В12 и фолиевая кислота оказывают в конечном итоге сходное и взаимодополняющее влияние на эритропоэз. Минимальная потребность здорового человека в витамине В12 составляет 0,6-1,2 мкг в день. Он поступает в связанном с животным белком состоянии с пищей в желудок, где происходит расщепление этого комплекса, а затем соединение витамина в "внутренним фактором" Кастла. Последний идентичен гастромукопротеину, который секретируется добавочными клетками главных желез желудка.

Витамин В12 всасывается на всем протяжении тонкой кишки, но преимущественно в дистальной части повздошной. Существует два механизма всасывания этого витамина: один связан с действием внутреннего фактора, другой основан на простой диффузии без участия гастромукопротеина. Диффузионный механизм возможен только при больших дозах витамина (500-1000 гамм).

Фолиевая кислота относится к водорастворимым витаминам, широко представлена в растительных продуктах, легко всасывается в дистальных отделах кишечника. В печени в присутствии В12 и аскорбиновой кислоты превращается в активно действующее соединение - фолиновую кислоту.

Витамин С. Значение аскорбиновой кислоты для эритропоэза определяется прежде всего активным участием этого витамина во всех этапах обмена железа. Этот витамин усиливает всасывание железа в 8-20 раз

Витамин В6 - участвует в синтезе гема. Недостаток этих витаминов в организме приводит к нарушению образования флавиновых коферментов, которые принимают участие в синтезе жирных кислот, необходимых для образования липидной стромы эритроцитов. Эти же коферменты влияют на образование эритропоэтина.

Витамин В15 (пангамовая кислота). Недостаточное поступление пангамовой кислоты приводит к возникновению лейкопении и гипоплазии костного мозга. Такие же изменения отмечаются и при недостатке фолиевой кислоты. Считается, что пангамовая и пантотеновая кислоты необходимы для микробов кишечника, синтезирующих в физиологических условиях фолиевую кислоту.

Таким образом, регуляция гемопоэза сложна и многообразна. Далеко не все из описанные факторов имеют решающее значение. Ведущими среди них являются нейроэндокринные влияния и специфические гемопоэтины. Но все эти факторы взаимосвязаны и оказывают свое регулирующее влияние в тесном взаимодействии друг с другом, создавая в конечном итоге условия для нормального функционирования системы крови.

4. В норме внутрисосудистого свертывания крови не происходит, либо протекает в очень незначительной степени. Тонкая регуляция процесса свертывания крови является результатом взаимодействия многих факторов и систем:

1. Присутствие в плазме целого ряда ингибиторов прокоагулянтов.

2. Многие факторы прочно связываются со сгустком - это ограничивает их действие.

3. Концентрация прокоагулянтов уменьшается вследствие их разведения протекающей кровью. Поэтому тромбы не образуются в сосудах с быстрым кровотоком, но возникают при венозном стазе (при варикозном расширении вен).

Регуляция свертывания крови осуществляется на трех уровнях.

Намолекулярном уровне обеспечивается стабильность содержания факторов. Это обусловлено связями системы гемостаза с иммунной системой. Каждый фактор свертывания крови имеет свои антитела, которые связывают его.

На клеточном уровне регуляция осуществляется по механизму отрицательной обратной связи: при повышении содержания фибриногена клетки печени уменьшают его продукцию.

В целом механизм регуляции свертывания крови нейрогуморальный. В организме существуют специальные хеморецепторы (особенно каротидной и аортальной зон), реагирующие на концентрацию в крови тромбина, плазмина и других факторов свертывающей и противосвертывающей систем.

Возбуждение симпатической нервной системы (a-адренорецепторов) повышает скорость свертывания крови (гиперкоагуляция). Это отмечается при стрессовых состояниях, страхе, боли, сопровождающиеся выделением адреналина надпочечниками.

Под влиянием адреналина:

Высвобождается тромбопластин стенкой сосуда.

Активируется FXII Хагемана (контактный фактор), который активирует кровяной протромбопластин.

Активируется высвобождение фосфолипидов из эритроцитов.

Глюкокортикоиды, соматотропный гормон, антидиуретический гормон, кальцитонин, тестостерон, прогестерон первично вызывают гиперкоагуляцию и вторично активируют фибринолиз.

Свертывание крови предотвращается действием сложного рефлекторно-гуморального противосвертывающего механизма.

При появлении в сосудистом русле малыхконцентрациимедленнообразующегосятромбина происходит его прямая нейтрализация естественными антикоагулянтами плазмы (антитромбинами, гепарином).

Гепарин блокирует образование тромбопластина и тромбина, рефлекторно увеличивается количество активаторов плазминогена.

Раздражение парасимпатической нервной системы (n. vagus) приводит к выделению из стенок сосудов веществ, аналогичных тем, что и под влиянием адреналина.

Свертывание крови, контактирующей с травмированными тканями, осуществляется за 5 -10 мин. Основное время в этом процессе уходит на образование протромбиназы, тогда как переход протромбина в тромбин и фибриногена в фибрин осуществляется довольно быстро. В естественных условиях время свертывания крови может уменьшаться (развивается гиперкоагуляция) или удлиняться (возникает гипокоагуляция).

Установлено, что при острой кровопотере, гипоксии, интенсивной мышечной работе, болевом раздражении, стрессе свертывание крови значительно ускоряется, что может привести к появлению фибрин-мономеров и даже фибрина s в сосудистом русле. Однако благодаря одновременной активации фибринолиза, носящего защитный характер, появляющиеся сгустки фибрина быстро растворяются и не наносят вреда здоровому организму.

Ускорение свертывания крови и усиление фибринолиза при всех перечисленных состояниях обусловлены повышением тонуса симпатической части автономной нервной системы и поступлением в кровоток адреналина и норадреналина. При этом активируется фактор Хагемана, что приводит к запуску внешнего и внутреннего механизма образования протромбиназы, а также стимуляции Хагеман-зависимого фибринолиза. Кроме того, под влиянием адреналина усиливается образование апопротеина III - составной части тромбопластина, и наблюдается, отрыв клеточных мембран от эндотелия, обладающих свойствами тромбопластина, что способствует резкому ускорению свертывания крови. Из эндотелия также выделяются ТАП и урокиназа, приводящие к стимуляции фибринолиза

В случае повышения тонуса парасимпатической части автономной нервной системы (раздражение блуждающего нерва, введение АХ, пилокарпина) также наблюдаются ускорение свертывания крови и стимуляция фибринолиза. В этих условиях происходит выброс тромбопластина и активаторов плазминогена из эндотелия сердца и сосудов.

Следовательно, основным эфферентным регулятором свертывания крови и фибринолиза является сосудистая стенка. Напомним также, что в эндотелии сосудов синтезируется Pgl2, препятствующий в кровотоке адгезии и агрегации тромбоцитов. Вместе с тем развивающаяся гиперкоагуляция может смениться гипокоагуляцией, которая в естественных условиях носит вторичный характер и обусловлена расходом (потреблением) тромбоцитов и плазменных факторов свертывания крови, образованием вторичных антикоагулянтов, а также рефлекторным выбросом в сосудистое русло в ответ на появление фактора IIа, гепарина и антитромбина III

При многих заболеваниях, сопровождающихся разрушением эритроцитов, лейкоцитов, тромбоцитов и тканей и/или гиперпродукциейапопротеина III стимулированными эндотелиальными клетками, моноцитами и макрофагами (эта реакция опосредована действием антигенов и интерлейкинов), развивается ДВС-синдром, значительно отягощающий течение патологического процесса и даже приводящий к смерти больного.

В настоящее время ДВС-синдром обнаружен более чем при 100 различных заболеваниях. Особенно часто он возникает при переливании несовместимой крови, обширных травмах, отморожениях, ожогах, длительных оперативных вмешательствах на легких, печени, сердце, предстательной железе, всех видах шока, краш-синдроме (длительное сдавление конечностей), а также в акушерской практике при попадании в кровоток матери околоплодных вод, насыщенных тромбопластином плацен­тарного происхождения. При этом возникает гиперкоагуляция, которая из-за интенсивного потребления тромбоцитов, фибриногена, факторов V, VIII, XIII и др. в результате интенсивного внутрисосудистого свертывания крови сменяется вторичной гипокоагуляцией вплоть до полной неспособности крови к образованию фибриновых сгустков, что приводит к трудно поддающимся терапии кровотечениям.

Антисвертывающая система приводится в действие рефлекторно при раздражении тромбином хеморецепторов кровеносных сосудов. При этом образуется протеолитический фермент фибролизин, разрушающий фибриноген и, следовательно, предупреждающий образование тромба. Одновременно увеличивается содержание в крови гепарина, который снижает защитную реакцию организма на фибролизин.

Наоборот, тромбы образуются, когда содержание фибриногена в крови возрастает, снижается ее фибринолитическая активность и повышается выносливость к гепарину. Фибринолитическая способность крови увеличивается после мышечной работы, при эмоциях и понижается при голодании.

Боль средней силы ускоряет свертывание крови, а сильная боль - замедляет.

Регуляция свертывания крови производится безусловными и условными рефлексами.

 



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2018-01-08 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: