Средства «виртуальной реальности»




Компьютерные средства создают настолько полные зрительные, звуковые и иные ощущения, что пользователь забывает о реальном окружающем мире и с увлечением погружается в вымышленный мир. Особый эффект присутствия достигается возможностями свободного перемещения в виртуальной реальности (VR) — модельной трехмерной окружающей среде, которая создается компьютерными средствами и реалистично реагирующая на взаимодействие с пользователями [2]. Простейший вход в виртуальную реальность осуществляется через экран компьютера, на котором эту реальность и можно наблюдать. При этом перемещения и воздействие на виртуальный мир осуществляется обычно с помощью мышки, джойстика или клавиатуры [6].

Самым полным набором оборудования для виртуальной реальности является VR-костюм (рис. 3). Он состоит из обтягивающего комбинезона с множеством магнитных сенсоров, которые отслеживают движения всех частей тела. К нему добавляется HMD, датчик кисти или перчатка и провода для присоединения всего этого к компьютеру. Для более глубокого погружения в виртуальные миры к VR устройствам добавляют 3D-звук. Технологии объемного звучания позволяют воспроизводить настолько реалистичный звук, что его трудно отличить от настоящего.

Рисунок 3. Средства виртуальной реальности


 

Акустическая среда мультимедиа

Форматы звукозаписи

При использовании компьютера звукозаписи, как и любые другие данные, должны храниться в виде файлов. На сегодняшний день существует много разных форматов файлов, применяемых для хранения звукозаписей. Часть из них уже устарела и представляет лишь исторический интерес, а другие используются активно. Однако какой бы формат ни использовался, работа со звуком в цифровом представлении связана с главной проблемой — это большой объем звукозаписей. Для экономии места применялась упаковка файлов, но структура цифровой звукозаписи препятствует ее эффективному сжатию традиционными методами (обратимое сжатие), так как достигалась экономия не более 10–20% места. Только после решения данной проблемывозникла возможность активного использования компьютеров в обработке музыкальных записей [5]. В конце 1980-х гг. группа исследователей MPEG (Motion Picture Expert Group) разработала способ десятикратного сжатия звуковых данных практически без потери качества. Соответствующий формат получил обозначение MP3 (MPEG Layer 3). С 1999 г. этот формат получил широкое распространение. Алгоритмы необратимого сжатия звуковых данных, предложенные в рамках стандарта на формат представления упакованной видеоинформации МРЕG [5, 6], используют совершенно иной, так называемый психоакустический подход. Этот подход основан на том, что в сложных составных звуках (например, в звуке оркестра) не все компоненты (в зависимости от громкости и частоты) воспринимаются на слух. Сжатие основано на фильтрации и удалении неслышимых компонентов. Сжатый звук может представлять собой звуковую дорожку видеозаписи или сохраняться автономно. Соотношение между плотностью упаковки и качеством звукозаписи в этом формате практически оптимально. Для представления звукозаписи формат МРЕG предлагает три варианта («уровня»). Каждый следующий уровень основывается на предыдущем и обеспечивает более высокую степень сжатия. Последний, третий уровень, дающий наиболее высокую степень сжатия, так и называется: МРЕG уровень III, или просто МР3. Файлы, использующие данный формат, занимают в 10–12 раз меньше места на жестком диске, чем аналогичные неупакованные файлы при хорошем качестве звука. Примерные коэффициенты сжатия при использовании разных уровней в формате МРЕG приведены в таблице 1.

Таблица 1 Коэффициенты сжатия разных уровней МРЕG

Уровень Степень сжатия Поток данных Качество записи
I   384 Кбит/с Максимальное
II 6–8 256–192 Кбит/с Повышенное
III 10–12 128–112 Кбит/с Высокое

 


 

ЛИТЕРАТУРА

1 Алексеев, А. П. Современные мультимедийные информационные технологии / А. П. Алексеев.и др. — М.: СОЛОН-Пресс, 2017. — 108 c.

2 Аудиоадаптеры [Электронный ресурс]. — Режим доступа: https://audio.probudget.ru, свободный. — Загл. с экрана.

3 Аудиовизуальные технологии: компьютер и мультимедийные средства [Электронный ресурс]. — Режим доступа: https://yeeegorka.my1.ru/, свободный. — Загл. с экрана.

4 Большаков, В. П. Инженерная и компьютерная графика. Теоретический курс и тестовые задания / В.П. Большаков, А.В. Чагина. — СПб.: БХВ-Петербург, 2016. — 382 c.

5 Боресков, А. Компьютерная графика. Учебник и практикум / А. Боресков, Е. Шикин. — М.: Юрайт, 2016. — 220 c.

6 Варлатая, С. К. Аппаратно-программные средства и методы защиты информации: Учебное пособие / С. К. Варлатая, М. В. Шаханова. — Владивосток: ДВГТУ, 2007. — 318 c.

7 Введение в аппаратные средства мультимедиа [Электронный ресурс]. — Режим доступа: https://files.school-collection.edu.ru/dlrstore/a3a9d255-b6ce-49d5-afe1-62dabaddd3a5/lect2.htm/lect2.htm, свободный. — Загл. с экрана.

8 Виртуальная реальность для программиста: обзор устройств и средств разработки [Электронный ресурс]. — Режим доступа: https://xakep.ru/2016/08/02/virtual-coding/, свободный. — Загл. с экрана.



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2023-02-04 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: