Пьезометрическим уклоном называют изменение удельной потенциальной энергии жидкости вдоль потока, приходящееся на единицу его длины.





Если гидравлический уклон всегда положителен, то пьезометрический может быть и положительным, и отрицательным. Следовательно, пьезометрическая линия параллельна энергетической, и пьезометрический уклон равен гидравлическому.

Изменение удельной потенциальной энергии положения вдоль потока жидкости, приходящееся на единицу длины, называют геометрическим уклоном i и определяют по формуле

где l ‑ расстояние между сечениями потока.

 

25. При изучении движения реальных жидкостей встречается много. Первым этапом изучения процесса является отбор определяющих этот процесс факторов и исключение из рассмотрения тех из них, которые оказывают пренебрежимо малое влияние.

Гидродинамическое подобие складывается из трех составляющих: геометрического, кинематического и динамического подобия.

Геометрическое подобие, как известно из геометрии, предполагает пропорциональность сходственных размеров и равенство соответствующих углов. В гидравлике под геометрическим подобием понимается подобие тех поверхностей, которые ограничивают потоки, то есть подобие русел или каналов. При этом подобными должны быть не только русла в пределах изучаемого участка, но и непосредственно перед и за ними, так как они будут оказывать влияние на характер течения жидкости на изучаемом участке. Отношение двух сходственных размеров подобных русел назовем линейным масштабом и обозначим через kL. Эта величина одинакова (idem) для подобных русел I и II:

.

Кинематическое подобие означает пропорциональность местных скоростей в сходственных точках и равенство углов, характеризующих направление этих скоростей:

где kV – масштаб скоростей, одинаковый при кинематическом подобии.

Так как

где T – время, kT – масштаб времени.

Очевидно, что для кинематического подобия необходимо геометрическое подобие русел.

Динамическое подобие это пропорциональность сил, действующих на сходственные объемы в кинематически подобных потоках и равенство углов, характеризующих направление этих сил.

В потоках жидкости обычно действуют разные силы: силы давления, вязкости, тяжести и др. Соблюдение этих пропорциональностей означает полное гидродинамическое подобие. Осуществить полное подобие на практике удается далеко не всегда, поэтому часто имеют дело с частичным (неполным) подобием, при котором пропорциональны только лишь основные, главные силы.

Для напорных течений в закрытых руслах, то есть для потоков в трубах, в гидромашинах и т. п., такими силами являются силы давления, вязкости и инерции. На жидкость действует также сила тяжести, но в напорных потоках ее действие проявляется через давление: pпр = p + grh, то есть она учитывается.

Силы инерции определяются произведением массы на ускорение F = ma, а их отношение в подобных потоках равно масштабу сил:

где kr – масштаб плотностей.

Таким образом, силы инерции пропорциональны плотности, квадрату скорости и размеру L во второй степени, то есть площади S:

Силы инерции примем за основу и другие силы будем сравнивать с инерционными, то есть с

Таким образом, для гидродинамического подобия потоков необходимо, чтобы

Это отношение называют числом Ньютона и обозначают Ne

Рассмотрим три характерных случая воздействия на движущуюся жидкость основных сил и найдем условия подобия потоков.

1. На жидкость действуют лишь силы давления и инерции. Тогда F = DpS ~ DpL2 и условие гидродинамического подобия примет вид:

где Dp – разность давлений или просто давление,

Eu – безразмерный критерий, число Эйлера.

Таким образом, в этом случае условием гидродинамического подобия потоков является равенство чисел Эйлера, которые равны величине, пропорциональной отношению сил давления к силам инерции.

2. На жидкость действуют силы вязкости, давления и инерции. Тогда . Условие гидродинамического подобия потоков после деления на rV 2L2 примет вид:

где Re – безразмерный критерий, называемый числом Рейнольдса.

Следовательно, условием гидродинамического подобия геометрически подобных потоков является равенство чисел Рейнольдса, подсчитанных для сходственных сечений потоков.

3. На жидкость действуют силы тяжести, давления и инерции. Тогда F ~ grL3 и условие гидродинамического подобия потоков примет вид:

где Fr – безразмерный критерий, число Фруда.

Следовательно, условием гидродинамического подобия геометрически подобных потоков является равенство чисел Фруда.

 

26. Опыты показывают, что возможны два режима или два вида течения жидкостей и газов в трубах: ламинарный и турбулентный.

ламинарным называется слоистое течение без перемешивания частиц жидкости и без пульсаций скоростей и давления. При таком течении все линии тока определяются формой русла, по которому течет жидкость. При ламинарном течении жидкости в прямой трубе постоянного сечения все линии тока направлены параллельно оси трубы, т. е. прямолинейно; отсутствуют поперечные перемещения жидкости.

Турбулентным называется течение, сопровождающееся интенсивным перемешиванием жидкости и пульсациями скоростей и давлений. При турбулентном течении векторы скоростей имеют не только осевые, но и нормальные составляющие, поэтому наряду с основным продольным перемещением жидкости вдоль русла происходят поперечные перемещения (перемешивание) и вращательное движение отдельных объемов жидкости.

Режим течения данной жидкости в данной трубе изменяется при вполне определенной средней по сечению скорости течения υ кр, которую называюткритической. Как показывают опыты, значение этой скорости прямо пропорционально кинематической вязкости v и обратно пропорционально диаметру d трубы, т. с.

.

Входящий в эту формулу безразмерный коэффициент пропорциональности k одинаков для всех жидкостей и газов, а также для любых диаметров труб. Это означает, что изменение режима течения происходит при определенном соотношении между скоростью, диаметром и вязкостью v:

k = υкр d/v.

Полученное безразмерное число называется критическим числом Рейнольдса и обозначается

Reкр = υкр d/v. (3.19)

Критическое число Рейнольдса Reкр не зависит от рода жидкости и размеров сечения, а лишь в небольшой степени определяется формой сечения и шероховатостью стенок трубы.

Таким образом, критическое число Рейнольдса является критерием, определяющим режим течения в трубах.

Как показывают опыты, для труб круглого сечения Reкр ≈ 2300.

Зная скорость движения жидкости, ее вязкость и диаметр трубы, можно расчетным путем найти число Re и, сравнив его с Reкр , определить режим течения жидкости.

При Re < Reкр течение является ламинарным, при Re > Reкр — турбулентным. Точнее говоря, вполне развитое турбулентное течение в трубах устанавливается лишь при

Re ≥ 10000, а при Re = 2300 … 10000 имеет место переходная, критическая область.

На практике имеют место как ламинарное, так и турбулентное течения, причем первое наблюдается в основном в тех случаях, когда по трубам движутся весьма вязкие жидкости, например смазочные масла, второе обычно происходит в водопроводах, а также в трубах, по которым перетекают бензин, керосин, спирты, кислоты и другие маловязкие жидкости.

 

27. В некоторых случаях при движении жидкости в закрытых руслах происходят явления, связанные с изменением агрегатного состояния жидкости, т.е. с превращением ее в пар, а также с выделением из жидкости растворенных в ней газов. Например, при течении жидкости через местное сужение трубы увеличивается скорость и падает давление. Если абсолютное давление при этом достигает значения, равного давлению насыщенных паров этой жидкости при данной температуре, или давлению, при котором начинается выделение из нее растворенных газов, то в данном месте потока начинается интенсивное парообразование (кипение) и выделение газов. В расширяющейся части скорость потока уменьшается, а давление возрастает, и выделение паров и газов прекращается; выделившиеся пары конденсируются, а газы постепенно вновь растворяются. Это местное нарушение сплошности течения с образованием паровых и газовых пузырей (каверн), обусловленное местным падением давления в потоке, называется кавитацией.

Вода или иная жидкость под давлением в несколько атмосфер подводится к регулировочному крану (вентилю) А и далее протекает через прозрачную трубку Вентури, которая сначала плавно сужает поток, затем еще более плавно расширяет и через кран Б выводит в атмосферу.

При небольшом открытии регулировочного крана и, следовательно, при малых значениях расхода и скорости жидкости падение давления в узком месте трубки незначительно, поток вполне прозрачен, и кавитация отсутствует. При постепенном открытии крана происходит увеличение скорости жидкости в трубке и падение абсолютного давления.

При некотором значении этого давления, которое можно считать равным давлению насыщенных паров (рабс2 = рн.п), в узком месте трубки появляется отчетливо видимая зона кавитации, представляющая собой область местного кипения жидкости и последующей конденсации паров. Размеры зоны кавитации возрастают по мере дальнейшего открытия крана, т. е. при увеличении давления в сечении 1-1,а следовательно, и расхода. Однако как бы при этом ни возрастал расход, давление в узком сечении 2-2 сохраняется строго постоянным потому, что постоянно давление насыщенных паров.

Кавитация сопровождается характерным шумом, а при длительном ее воздействии также эрозионным разрушением металлических стенок.

При возникновении кавитации значительно увеличивается сопротивление трубопроводов и, следовательно, уменьшается их пропускная способность, потому что каверны уменьшают живые сечения потоков, скорость в которых резко возрастает, и, как следствие, резко возрастает коэффициент местных сопротивлений.

В гидросистемах кавитация может возникать в трубопроводах низкого давления — во всасывающих трубопроводах.

 

28. Потери энергии (уменьшение гидравлического напора) можно наблюдать в движущейся жидкости не только на сравнительно длинных участках, но и на коротких. В одних случаях потери напора распределяются (иногда равномерно) по длине трубопровода - это линейные потери; в других - они сосредоточены на очень коротких участках, длиной которых можно пренебречь, - на так называемых местных гидравлических сопротивлениях: вентили, всевозможные закругления, сужения, расширения и т.д., короче всюду, где поток претерпевает деформацию. Источником потерь во всех случаях является вязкость жидкости.

Следует заметить, что потери напора и по длине и в местных гидравлических сопротивлениях существенным образом зависят от так называемого режима движения жидкости.

 

29. Как показывают исследования, при ламинарном течении жидкости в круглой трубе максимальная скорость находится на оси трубы. У стенок трубы скорость равна нулю, т.к. частицы жидкости покрывают внутреннюю поверхность трубопровода тонким неподвижным слоем. От стенок трубы к ее оси скорости нарастают плавно.

Уравнение, связывающее переменные и , имеет следующий вид:

где P1 и P2 - давления соответственно в сечениях 1 и 2.

У стенок трубы величина r = R, , значит скорость υ = 0, а при r = 0 (на оси потока) скорость будет максимальной

Теперь определим расход жидкости при ламинарном течении в круглой трубе. Так как эпюра распределения скоростей в круглой трубе имеет вид параболоида вращения с максимальным значением скорости в центре трубы, то расход жидкости численно равен объему этого параболоида. Определим этот объем.

Максимальная скорость дает высоту параболоида

Как известно из геометрии, объем параболоида высотой h и площадью равен

а в нашем случае

Если вместо R подставить диаметр трубы d, то

Расход в трубе можно выразить через среднюю скорость:

откуда

Для определения потерь напора при ламинарном течении жидкости в круглой трубе рассмотрим участок трубы длиной l, по которому поток течет в условиях ламинарного режима.

Потеря давления в трубопроводе будет равна

Если в формуле динамический коэффициент вязкости заменить через кинематический коэффициент вязкости и плотность ( ) и разделить обе части равенства на удельный вес жидкости , то получим:

Так как левая часть полученного равенства равна потерям напора hпот в трубе постоянного диаметра, то окончательно это равенство примет вид:

Уравнение может быть преобразовано в универсальную формулу Дарси‑Вейсбаха, которая окончательно записывается так:

где - коэффициент гидравлического трения, который для ламинарного потока вычисляется по выражению:

Однако при ламинарном режиме для определения коэффициента гидравлического трения Т.М. Башта рекомендует при Re < 2320 применять формулу

 

 

33. Истечение под уровень

При течении жидкости в закрытых руслах часто приходится иметь дело с истечением жидкости не в газовую среду, а в пространство, заполненное этой же жидкостью (рисунок 4.2). Такое истечение называется истечением под уровень или истечением через затопленное отверстие.

Здесь, так же как и в предыдущем случае, при определении расхода Q следует составить уравнение Бернулли. Запишем его для сечений 1-1 и 2-2, в которых скорости движения жидкости принимаются равными нулю:

,

где — потери напора при движении жидкости между сечениями 1-1 и 2-2.

При определении потерь напора в этом случае необходимо учитывать, что они складываются из двух составляющих:

,

где ho — потери напора на торможение частиц жидкости о входную кромку отверстия;

hв.р — потери напора на внезапное расширение в баке после прохождения жидкости через отверстие.

Потери ho практически равны потерям при истечении через отверстие в газовую среду:

.

Следует иметь в виду, что при истечении под уровень вся кинетическая энергия струи, приобретенная частицами жидкости в отверстии, при попадании в покоящуюся жидкость теряется на вихреобразование так же, как при внезапном расширении. Поэтому потери hв.р численно равны соответствующему скоростному напору, посчитанному по средней скорости жидкости в струе с учетом коэффициента Кориолиса α:

.

Таким образом, суммарные потери напора

.

Подставив полученное выражение в уравнение Бернулли, получим

.

Если в этом уравнении за расчетный напор принять выражение , то после преобразований можно получить формулу, определяющую значение средней скорости жидкости в сжатом сечении струи:

,

которая совпадает с формулой (4.2). Это значит, что, проводя дальнейшие преобразования, необходимые для получения формулы, определяющей расход Qпри истечении, можно получить формулы (4.6) и (4.7).

Таким образом, как при истечении в газовую среду, так и при истечении под уровень расчетные формулы, определяющие расход Q, имеют один и тот же вид. Кроме того, как показала практика, коэффициенты , и , использующиеся в этих формулах, в обоих случаях истечения имеют одинаковые значения при равенстве соответствующих чисел Рейнольдса.

 

 

34. Истечение жидкости через насадки.

Насадками называются короткие трубки, монтируемые, как правило, с внешней стороны резервуара таким образом, чтобы внутренний канал насадка полностью соответствовал размеру отверстия в тонкой стенке. Наличие такой направляющей трубки приведет к увеличению расхода жидкости при прочих равных условиях.

Причины увеличения следующие При отрыве струи от острой кромки отверстия струя попадает в канал насадка, а поскольку струя испытывает сжатие, то стенок насадка она касается на расстоянии от 1,0 до 1,5 его диаметра. Воздух, который первоначально находится в передней части насадка, вследствие неполного заполнения его жидкостью постепенно выносится вместе с потоком жидкости. Таким образом, в этой области образуется «мёртвая зона», давление в которой ниже,

чем давление в окружающей среде (при истечении в атмосферу в «мёртвой зоне» образуется вакуум). За счёт этих факторов увеличивается перепад давления между резервуаром и областью за внешней его стенкой и в насадке генерируется так называемый эффект подсасывания жидкости из резервуара. Однако наличие самого насадка увеличивает гидравлическое сопротивление для струи жидкости, т.к. в самом насадке появляются потери напора по длине трубки. Если трубка имеет ограниченную длину, то влияние подсасывающего эффекта с лихвой компенсирует дополнительные потери напора по длине. Практически эти эффекты (подсасывание и дополнительные сопротивления по длине) компенсируются при соотношении: / = 55 d. По этой причине длина насадков ограничивается / = (3 -5)d . По месту расположения насадки принято делить на внешние и внутренние насадки. Когда насадок монтируется с внешней стороны резервуара (внешний насадок), то он оказывается более технологичным, что придаёт ему преимущество перед внутренними насадками. По форме исполнения насадки подразделяются на цилиндрические и конические, а по форме входа в насадок выделяют ещё коноидальные насадки, вход жидкости в которые выполнен по форме струи.

Внешний цилиндрический насадок. При истечении жидкости из цилиндрического насадка сечение выходящей струи и сечение отверстия одинаковы, а это значит, что коэффициент сжатия струи = 1.

 

Сходящиеся насадки. Если придать насадку форму конуса, сходящемуся по направлению к его выходному отверстию, то такой насадок будет относиться к группе сходящихся конических насадков. Такие насадки характеризуются углом конусности а. От величины этого угла зависят все характеристики насадков. Как коэффициент скорости, так и коэффициент расхода увеличиваются с увеличением угла конусности, при угле

» конусности в 13° достигается максимальное значение коэффициента расхода превышающее 0,94. При дальнейшем увеличении угла конусности насадок начинает работать как отверстие в тонкой стенке, при этом коэффициент скорости продолжает увеличиваться, а коэффициент расхода начинает убывать. Это объясняется тем, что уменьшаются потери на расширение струи после её сжатия. Область применения сходящихся насадков связана с теми случаями, когда необходимостью иметь большую выходную скорость струи жидкости при значительном напоре (сопла турбин, гидромониторы, брандспойты).

Расходящиеся насадки. Вакуум в сжатом сечении расходящихся насадков больше, чем у цилиндрических насадков и увеличивается с возрастанием угла конусности, что увеличивает расход жидкости. Но с увеличением угла конусности расходящихся насадков возрастает опасность отрыва струи от стенок насадков. Необходимо отметить, что потери энергии в расходящемся насадке больше, чем в насадках других типов. Область применения расходящихся насадков охватывает те случаи, где требуется большая пропускная способность при малых выходных скоростях жидкости (водоструйные насосы, эжекторы, гидроэлеваторы и др.)

Коноидальные насадки. В коноидальных насадках вход в насадки выполнен по профилю входящей струи. Это обеспечивает уменьшение потерь напора до минимума. Так значение коэффициентов скорости и расхода в коноидальных цилиндрических насадков достигает 0,97 - 0,99.

 

 





Читайте также:
Методика расчета пожарной нагрузки: При проектировании любого помещения очень важно...
Определение понятия «общество: Понятие «общество» употребляется в узком и широком...
Роль языка в формировании личности: Это происходит потому, что любой современный язык – это сложное ...
Экономика как подсистема общества: Может ли общество развиваться без экономики? Как побороть бедность и добиться...

Рекомендуемые страницы:



Вам нужно быстро и легко написать вашу работу? Тогда вам сюда...

Поиск по сайту

©2015-2021 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2016-02-16 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту:

Мы поможем в написании ваших работ! Мы поможем в написании ваших работ! Мы поможем в написании ваших работ!
Обратная связь
0.033 с.