УРАВНЕНИЕ ПЛОСКОЙ УПРУГОЙ ВОЛНЫ





Для упругих волн уравнение волны представляет собой выражение, которое задает смещение колеблющейся частицы как функцию координат равновесного положения частицы и времени. Пусть волна распространяется в направлении оси X, тогда

.

Эта функция должна быть периодической как относительно времени t, так и относительно координаты . Периодичность во времени вытекает из того, что описывает колебания частицы с координатой . Периодичность по координатам следует из того, что точки, отстоящие друг от друга на расстоянии, равном длине волны, колеблются одинаковым образом.

Найдем вид функции в случае плоской волны, предполагая, что колебания носят гармонический характер. Пусть колебания точек, лежащих в плоскости , имеют вид:

.

Найдем вид колебаний точек в плоскости, соответствующей произвольному значению . Для того, чтобы пройти путь от плоскости до этой плоскости, волне требуется время ( – скорость распространения волны) (рис. 8.3). Следовательно, колебания частиц, лежащих в плоскости , будут отставать по времени на от колебаний частиц в плоскости , то есть будут иметь вид:

  (8.1)

где – амплитуда волны. Начальная фаза волны определяется выбором начала отсчета и . Зависимость фазы рассматриваемой волны и от времени, и от пространственных координат означает, что каждое данное значение фазы распространяется в пространстве.

Волна, распространяющаяся в противоположном направлении, описывается уравнением:

.

В физике обычно используют обозначение . Величину называют волновым числом. Используя это обозначение, уравнение плоской волны, распространяющейся в положительном направлении оси , можно записать в виде:

  . (8.2)

Это уравнение монохроматической волны, распространяющейся со скоростью в положительном направлении оси X. Различные точки волны в момент времени имеют разные смещения. Но ряд точек, отстоящих на расстояние одна от другой, в любой момент времени смещены одинаково (так как аргументы косинусов в уравнении (8.2) отличаются на и, следовательно, их значения равны). Это расстояние и есть длина волны . Она равна пути, который проходит волна за один период колебаний частиц среды.

Скорость смещения элементов среды равна производной от смещения частицы по времени:

.

Таким образом, скорость смещения элементов среды меняется по тому же закону, что и само смещение, но со сдвигом по фазе на : скорость достигает максимума, когда смещение падает до нуля. Введенная выше скорость описывает распространение только бесконечной монохроматической волны. Она определяет скорость перемещения ее фазы и называется фазовой скоростью.

Все приведенные рассуждения относятся к распространению волн в непоглощающей среде, то есть в среде, в которой механическая энергия не переходит в другие виды энергии.

Замечание

При выводе соотношения мы полагали, что амплитуда колебаний не зависит от координаты . Для плоских волн это справедливо, когда энергия волны не поглощается средой. При распространении же в поглощающей энергию среде наблюдается затухание волны, причем, как показывает опыт, в однородной среде затухание происходит по экспоненциальному закону:

и, соответственно, уравнение плоской волны имеет следующий вид:

.





Читайте также:
Русский классицизм в XIX веке: Художественная культура XIX в. развивалась под воздействием ...
ТЕМА: Оборудование профилактического кабинета: При создании кабинетов профилактики в организованных...
Фразеологизмы и их происхождение: В Древней Греции жил царь Авгий. Он был...
Примеры решений задач по астрономии: Фокусное расстояние объектива телескопа составляет 900 мм, а фокусное ...

Рекомендуемые страницы:


Поиск по сайту

©2015-2020 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2016-02-16 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту:

Обратная связь
0.043 с.