УРАВНЕНИЕ ПЛОСКОЙ УПРУГОЙ ВОЛНЫ




Для упругих волн уравнение волны представляет собой выражение, которое задает смещение колеблющейся частицы как функцию координат равновесного положения частицы и времени. Пусть волна распространяется в направлении оси X, тогда

.

Эта функция должна быть периодической как относительно времени t, так и относительно координаты . Периодичность во времени вытекает из того, что описывает колебания частицы с координатой . Периодичность по координатам следует из того, что точки, отстоящие друг от друга на расстоянии, равном длине волны, колеблются одинаковым образом.

Найдем вид функции в случае плоской волны, предполагая, что колебания носят гармонический характер. Пусть колебания точек, лежащих в плоскости , имеют вид:

.

Найдем вид колебаний точек в плоскости, соответствующей произвольному значению . Для того, чтобы пройти путь от плоскости до этой плоскости, волне требуется время ( – скорость распространения волны) (рис. 8.3). Следовательно, колебания частиц, лежащих в плоскости , будут отставать по времени на от колебаний частиц в плоскости , то есть будут иметь вид:

  (8.1)

где – амплитуда волны. Начальная фаза волны определяется выбором начала отсчета и . Зависимость фазы рассматриваемой волны и от времени, и от пространственных координат означает, что каждое данное значение фазы распространяется в пространстве.

Волна, распространяющаяся в противоположном направлении, описывается уравнением:

.

В физике обычно используют обозначение . Величину называют волновым числом. Используя это обозначение, уравнение плоской волны, распространяющейся в положительном направлении оси , можно записать в виде:

  . (8.2)

Это уравнение монохроматической волны, распространяющейся со скоростью в положительном направлении оси X. Различные точки волны в момент времени имеют разные смещения. Но ряд точек, отстоящих на расстояние одна от другой, в любой момент времени смещены одинаково (так как аргументы косинусов в уравнении (8.2) отличаются на и, следовательно, их значения равны). Это расстояние и есть длина волны . Она равна пути, который проходит волна за один период колебаний частиц среды.

Скорость смещения элементов среды равна производной от смещения частицы по времени:

.

Таким образом, скорость смещения элементов среды меняется по тому же закону, что и само смещение, но со сдвигом по фазе на : скорость достигает максимума, когда смещение падает до нуля. Введенная выше скорость описывает распространение только бесконечной монохроматической волны. Она определяет скорость перемещения ее фазы и называется фазовой скоростью.

Все приведенные рассуждения относятся к распространению волн в непоглощающей среде, то есть в среде, в которой механическая энергия не переходит в другие виды энергии.

Замечание

При выводе соотношения мы полагали, что амплитуда колебаний не зависит от координаты . Для плоских волн это справедливо, когда энергия волны не поглощается средой. При распространении же в поглощающей энергию среде наблюдается затухание волны, причем, как показывает опыт, в однородной среде затухание происходит по экспоненциальному закону:

и, соответственно, уравнение плоской волны имеет следующий вид:

.

...





Читайте также:
Своеобразие родной литературы: Толстой Л.Н. «Два товарища». Приёмы создания характеров и ситуаций...
Ограждение места работ сигналами на перегонах и станциях: Приступать к работам разрешается только после того, когда...
Основные понятия туризма: Это специалист в отрасли туризма, который занимается...
Средневековье: основные этапы и закономерности развития: Эпоху Античности в Европе сменяет Средневековье. С чем связано...

Поиск по сайту

©2015-2022 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2016-02-16 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту:


Мы поможем в написании ваших работ!
Обратная связь
0.01 с.