Центральные механизмы зрения 3 глава




Тело нейрона содержит общий для всех клеток генетический материал и сложный метаболический аппарат. Однако в отличие от большинства других клеток нейроны после завершения эмбрионального периода не делятся; исходный их запас должен служить в течение всей жизни организма. От тела клетки отходит несколько дендритов и один аксон. Тело клетки и дендриты покрыты синапсами — бляшкообразными структурами, через которые поступает информация от других нейронов. Митохондрии снабжают клетку энергией. Белки синтезируются на эндоплазматическом ретикулуме. Транспортная система перемещает белки и другие вещества от тела клетки к тем местам, где они требуются.

В области синапса аксон обычно расширяется, образуя на конце пре-синаптическую бляшку, которая является передающей информацию поверхностью контакта. Концевая бляшка содержит мелкие сферические образования, называемые синаптическими пузырьками, каждый из которых содержит несколько тысяч молекул химического медиатора. По прибытии в пресинаптическое окончание нервного импульса некоторые из пузырьков выбрасывают свое содержимое в узкую щель, отделяющую бляшку от мембраны дендрита другой клетки, предназначенного для приема таких химических сигналов. Таким образом, информация передается от одного нейрона другому с помощью некоторого посредника, или медиатора. Импульсация нейрона отражает активацию воздействующими нейронами сотен синапсов. Некоторые синапсы являются возбуждающими, т. е. они способствуют генерации импульсов, тогда как другие — тормозные — способны аннулировать действие сигналов, которые в их отсутствие могли бы возбудить разряд нейрона.

Синапс — это место переключения, в котором происходит передача информации от одного нейрона к другому с помощью химических медиаторов. Синапс состоит из двух частей: бляшкообразного утолщения, принадлежащего окончанию аксона, и рецепторной области на поверхности другого нейрона. Мембраны разделены синаптической щелью шириной около 200 нм. Молекулы химического медиатора, запасенные в пузырьках аксонного окончания, выделяются в щель под действием приходящих нервных импульсов. Медиатор изменяет электрическое состояние воспринимающего нейрона, увеличивая или уменьшая вероятность генерации этим нейроном импульса.

Хотя нейроны и являются строительными блоками мозга, это не единственные клетки, которые в нем имеются. Так, кислород и питательные вещества поставляются плотной сетью кровеносных сосудов. Существует потребность и в соединительной ткани, особенно на поверхности мозга. Один из важных классов клеток центральной нервной системы составляют глиальные клетки, или глия. Глия занимает в нервной системе практически все пространство, которое не занято самими нейронами. Хотя функция глии пока не вполне изучена, по-видимому, она обеспечивает структурную и метаболическую опору для сети нейронов.

Синаптическое окончание занимает большую часть этой электронно-микроскопической фотографии, полученной Дж. Хойзером из Университета калифорнийской медицинской школы в Сан-Франциско и Т. Ризом из Национальных институтов здравоохранения. Щель, отделяющая пресинаптическую мембрану от постсинаптической, проходит вдоль нижней части фотографии. Крупные, темные структуры — это митохондрии; многочисленные округлые тела — пузырьки, содержащие медиатор; расплывчатые темные участки, расположенные вдоль щели, предположительно являются основными местами выделения медиатора.

Еще одним типом клеток, повсеместно встречающихся в нервной системе, являются шванновские клетки. Оказывается, все аксоны заключены в оболочку из шванновских клеток. В некоторых случаях шванновские клетки просто окутывают аксон тонким слоем. Во многих же случаях в ходе эмбриогенеза шванновская клетка закручивается вокруг аксона, образуя несколько плотных слоев изоляции, называемой миелином. Миелиновая оболочка прерывается примерно через каждый миллиметр по длине аксона узкими щелями — так называемыми перехватами Ранвье. В аксонах, имеющих оболочку такого типа, распространение нервного импульса происходит путем его перескакивания от перехвата к перехвату, где внеклеточная жидкость оказывается в непосредственном контакте с клеточной мембраной. Эволюционный смысл миелиновой оболочки, по-видимому, состоит в экономии метаболической энергии нейрона. Как правило, миелинизированные нервные волокна проводят нервные импульсы быстрее, чем немиелинизированные.

Нейроны способны выполнять свою функцию только благодаря тому, что их наружная мембрана обладает особыми свойствами. Мембрана аксона по всей его длине специализирована для проведения электрического импульса. Мембрана аксонных окончаний способна выделять медиатор, а мембрана дендритов реагирует на медиатор. Кроме того, мембрана обеспечивает узнавание других клеток в процессе эмбрионального развития, так что каждая клетка отыскивает предназначенное ей место в сети, состоящей из 1011 клеток. В связи с этим многие современные исследования сосредоточены на изучении всех тех свойств мембраны, которые ответственны за нервный импульс, за синаптическую передачу, за узнавание клеток и за установление контактов между клетками.

Мембрана нейрона, как и наружная мембрана любой клетки, имеет в толщину около 5 нм и состоит из двух слоев липидных молекул, упорядоченных таким образом, что их гидрофильные концы обращены в сторону водной фазы, находящейся внутри и снаружи клетки, а гидрофобные концы повернуты в сторону от водной фазы и образуют внутреннюю часть мембраны. Липидная часть мембраны приблизительно одинакова у клеток всех типов. Что делает одну мембрану отличной от другой, так это специфические белки, которые связаны с мембраной тем или иным способом. Белки, которые фактически встроены в двойной липидный слой, называются внутренними белками. Другие белки, периферические мембранные белки прикреплены к мембранной поверхности, но не являются неотъемлемой частью ее структуры. В связи с тем, что мембранные липиды — жидкости, даже внутренние белки часто могут свободно перемещаться с места на место путем диффузии. Однако в некоторых случаях белки жестко закрепляются с помощью вспомогательных структур.

Мембранные белки всех клеток распадаются на пять классов: насосы, каналы, рецепторы, ферменты и структурные белки. Насосы расходуют метаболическую энергию для перемещения ионов и молекул против концентрационных градиентов и поддерживают необходимые концентрации этих молекул в клетке. Поскольку заряженные молекулы не могут пройти через сам двойной липидный слой, клетки приобрели в процессе эволюции белковые каналы, обеспечивающие избирательные пути для диффузии специфических ионов. Клеточные мембраны должны узнавать и прикреплять многие типы молекул. Эти функции выполняют рецепторные белки, которые представляют собой центры связывания, обладающие высокой специфичностью и сродством. Ферменты размещаются внутри мембраны или на ней, чем облегчается протекание химических реакций у мембранной поверхности. Наконец, структурные белки обеспечивают соединение клеток в органы и поддержание субклеточной структуры. Эти пять классов мембранных белков не обязательно взаимно исключают друг друга. Так, например, тот или иной белок может быть одновременно и рецептором, и ферментом, и насосом. Мембранные белки — это ключ к пониманию функций нейрона, а следовательно, и функций мозга. Поскольку они занимают такое центральное место в современных представлениях о нейроне, я сконцентрирую свое обсуждение вокруг описания ионного насоса, различных типов каналов и ряда других белков, которые в совокупности наделяют нейроны их уникальными свойствами. Общая идея состоит в том, чтобы суммировать важные характеристики мембранных белков и показать, как эти характеристики определяют нервный импульс и другие сложные особенности функций нейрона.

Подобно всем другим клеткам нейрон способен поддерживать постоянство своей внутренней среды, заметно отличающейся по составу от окружающей его жидкости. Особенно поразительны различия в концентрациях ионов натрия и калия. Наружная среда приблизительно в 10 раз богаче натрием, чем внутренняя, а внутренняя среда примерно в 10 раз богаче калием, чем наружная. Как калий, так и натрий способны проникать через поры в клеточной мембране, поэтому некоторый насос должен непрерывно производить обмен вошедших в клетку ионов натрия на ионы калия из наружной среды. Такое выкачивание натрия осуществляется внутренним мембранным белком, называемым Na-K-аденозинтрифосфатазным насосом, или, как его чаще называют, натриевым насосом.

Белковая молекула натриевого насоса (или комплекс белковых субъединиц) имеет молекулярный вес около 275000 и размеры порядка 6x8 нанометров, что несколько больше толщины клеточной мембраны. Каждый натриевый насос может использовать энергию, запасенную в форме фосфатной связи в аденозинтрифосфате (АТФ), для того, чтобы обменять три иона натрия внутренней среды клетки на два иона калия наружной среды. Работая с максимальной скоростью, каждый насос способен транспортировать через мембрану около 200 ионов натрия и 130 ионов калия в секунду. Однако фактическая скорость регулируется в соответствии с потребностями клетки. У большинства нейронов имеется от 100 до 200 натриевых насосов на квадратный микрон мембранной поверхности, но в некоторых участках этой поверхности их плотность почти в 10 раз выше. Типичный мелкий нейрон имеет, по-видимому порядка миллиона натриевых насосов, способных перемещать около 200 миллионов ионов натрия в секунду. Именно трансмембранные градиенты натрия и калия обеспечивают возможность проведения по нейрону нервного импульса.

Мембрана аксона разделяет жидкости, сильно отличающиеся по содержанию ионов натрия (цветные кружки) и ионов калия (черные кружки). Наружная среда приблизительно в 10 раз богаче ионами натрия, чем калия; во внутриклеточной среде соотношение ионов обратное. Мембрана пронизана белками, которые действуют как избирательные каналы, предпочтительно пропускающие либо ионы натрия, либо ионы калия. В состоянии покоя, когда импульсы не передаются, каналы обоих типов закрыты, и ионный нанос поддерживает ионные градиенты, выкачивая ионы натрия в обмен на ионы калия. Внутренность аксона в норме имеет отрицательный потенциал в 70 мВ по отношению к наружному раствору. Если эта разность потенциалов уменьшается вследствие прихода нервного импульса, натриевый канал открывается и позволяет ионам натрия входить внутрь аксона. Мгновением позже натриевый канал закрывается, а открывается калиевый, позволяя ионам калия выходить из клетки. Последовательное открывание и закрывание каналов двух типов приводит к распространению нервного импульса; этот процесс представлен на следующей иллюстрации.

Мембранные белки, которые служат каналами, существенны для многих сторон деятельности нейрона и в особенности для генерации нервного импульса и синаптической передачи. Чтобы представить значение каналов для электрической активности мозга, я коротко опишу механизм нервного импульса, а затем опять вернусь к более систематическому описанию свойств каналов.

Поскольку концентрации ионов натрия и калия по ту и другую сторону мембраны различаются, внутренность аксона имеет отрицательный потенциал примерно в 70 мВ по отношению к наружной среде. Четверть века тому назад в своих классических работах по изучению передачи нервного импульса вдоль гигантского аксона кальмара английские исследователи А. Ходжкин, А. Хаксли и Б. Катц показали, что распространение нервного импульса сопровождается резкими изменениями проницаемости мембраны аксона для ионов натрия и калия. Когда нервный импульс возникает в основании аксона (в большинстве случаев он генерируется клеточным телом в ответ на активацию дендритных синапсов), трансмембранная разность потенциалов в этом месте локально понижается. Непосредственно впереди области с измененным потенциалом (по направлению распространения нервного импульса) открываются мембранные каналы, пропускающие в клетку ионы натрия.

Распространение нервного импульса по аксону сопряжено с появлением локальных потоков ионов натрия (Na +) внутрь, сменяемых потоками ионов калия (К+) наружу через каналы, которые регулируются изменениями напряжения на мембране аксона. Электрический процесс, приводящий к распространению нервного импульса вдоль аксона, обычно развивается в клеточном теле. Генерация импульса начинается со слабой деполяризации, или уменьшения отрицательного потенциала внутренней поверхности мембраны, в том месте, где аксон отходит от клеточного тела. Этот небольшой сдвиг потенциала открывает некоторые из натриевых каналов, вызывая тем самым дальнейшее уменьшение потенциала.

Поток ионов натрия внутрь будет ускоряться до тех пор, пока внутренняя поверхность мембраны не станет локально положительной. Изменение знака потенциала приведет к закрыванию натриевых каналов и открыванию калиевых. Поток ионов калия наружу быстро восстановит отрицательный потенциал. Кратковременная реверсия потенциала, получившая названиепотенциала действия, сама распространяется по аксону (1, 2). После короткого рефрактерного периода за первым импульсом может следовать второй (3). Скорость распространения нервного импульса на схеме соответствует таковой в гигантском аксоне кальмара.

Этот процесс является самоусиливающимся: поток ионов натрия через мембрану способствует открыванию большего числа каналов и облегчает другим ионам возможность следовать за ними. Проникшие в клетку ионы натрия изменяют отрицательный внутренний потенциал мембраны на положительный. Вскоре после открывания натриевые каналы закрываются, но теперь открывается другая группа каналов, которая позволяет ионам калия выходить наружу. Этот поток восстанавливает потенциал внутри аксона до величины его потенциала покоя, т.е. до —70 мВ. Резкий скачок потенциала сначала в положительную, а затем в отрицательную сторону, который выглядит на экране осциллографа как пик («спайк»), известен под названием потенциала действия и является электрическим выражением нервного импульса. Волна изменения потенциала стремительно проносится по аксону до самого его конца во многом подобно тому, как бежит пламя по бикфордову шнуру.

Это краткое описание нервного импульса иллюстрирует важность каналов для электрической активности нейронов и подчеркивает два фундаментальных свойства каналов: избирательность и наличие воротных механизмов. Каналы проницаемы избирательно, и степень избирательности варьирует в широких пределах. Так, каналы одного типа позволяют проходить ионам натрия, но сильно препятствуют прохождению ионов калия, тогда как каналы другого типа делают обратное. Однако избирательность редко бывает абсолютной. Канал одного типа, который практически не обладает избирательностью, позволяет проходить примерно 85 ионам натрия на каждые 100 ионов калия; другой канал, с большей избирательностью, пропускает только около 7 ионов натрия на каждые 100 ионов калия. Канал первого типа, известный как активируемый ацетилхолином, имеет пору диаметром около 0,8 нм, которая заполнена водой. У канала второго типа, известного как калиевый канал, пора значительно меньше и содержит меньше воды.

Ион натрия приблизительно на 30% меньше иона калия. Точная молекулярная структура, позволяющая более крупным ионам проходить через клеточную мембрану легче, чем более мелким, неизвестна. Однако общие принципы, лежащие в основе такой дискриминации, понятны. Они включают взаимодействия между ионами и участками канальной структуры, сочетающиеся со специфическим упорядочением молекул воды внутри поры.

Активируемые ацетилхолином каналы плотно упакованы в постсинаптической мембране клетки электрического органа ската — рыбы, которая может наносить электрический удар. На этой микрофотографии показана покрытая платиной реплика мембраны, которая была заморожена и вытравлена. Размеры частиц платины не позволяют разрешать детали мельче 2 нм. Согласно последним данным, белковая молекула канала, размеры которой составляют 8,5 нм в поперечнике, состоит из пяти субъединиц, окружающих канал, наименьший размер которого составляет 0,8 нм. Микрофотография получена Хойзером и С. Салпетером (Heuser, S. Salpeter).

Ответ одиночного мембранного канала на медиатор ацетилхолин был зарегистрирован с помощью созданного недавно метода, который применили Э. Нехер и Дж. Стейнбах (медицинский факультет Йельского университета). Активируемые ацетилхолином каналы, имеющиеся в постсинаптических мембранах, пропускают приблизительно равные количества ионов натрия и калия. На записи показан ток через одиночный канал постсинаптической мембраны мышцы лягушки, возникающий при активации этого канала субэрилдихолином — веществом, имитирующим действие ацетилхолина, но открывающим каналы на более длительное время. Эксперимент показал, что процесс открывания каналов подчиняется закону «все или ничего» и время их пребывания в открытом состоянии варьирует случайным образом.

Натриевые каналы аксона также работают по принципу «все или ничего» и при этом независимо друг от друга, что было установлено исследованиями, проведенными Ф. Сигуорсом (медицинский факультет Йельского университета). В немиелинизированной области мембраны аксона, названной перехватом Ранвье, во время распространения нервного импульса обычно открывается около 10000 каналов, I -изменения проницаемости для натрия во времени; II- получена при 12-кратном усилении по сравнению с верхней; показаны флуктуации проницаемости вокруг среднего значения, обусловленные вероятностным характером процессов открывания и закрывания каналов.

Развитие нервных импульсов в телах нейронов требует координированного открывания и закрывания каналов пяти типов, пропускающих разные виды ионов (натрия, калия или кальция). Вклад различных каналов в нервный импульс можно оценить, решая систему нелинейных дифференциальных уравнений. А. Зависимость от времени фактически зарегистрированных (I) и вычисленных на основании уравнений (II) изменений потенциала внутри тела нейрона. Б. Изменения во времени всех токов, протекающих через основные типы каналов. Для возникновения серии нервных импульсов необходимо сложное взаимодействие каналов разных типов. Исследования, на основании которых построены данные кривые, были проведены Дж. Коннором в Иллинойском университете и автором статьи на медицинском факультете Йельского университета.

Воротные механизмы, регулирующие открывание и закрывание мембранных каналов, представлены двумя основными типами. Канал одного типа, упоминавшийся выше при описании нервного импульса, открывается и закрывается в ответ на изменения потенциала клеточной мембраны, поэтому говорят, что он управляется электрически. Второй тип каналов управляется химически. Такие каналы реагируют лишь слабо, если вообще реагируют, на изменения потенциала, но открываются, когда особая молекула — медиатор — связывается с некоторой рецепторной областью на белке канала. Химически управляемые каналы обнаружены в рецептивной мембране синапсов: они ответственны за перевод химических сигналов, посылаемых окончаниямиаксона в процессе синаптической передачи, в изменения ионной проницаемости. Химически управляемые каналы обычно именуют в соответствии с их специфическим медиатором. Так, например, говорят об АХ-активируемых каналах или о ГАМК-активируемых каналах (АХ — ацетилхолин, ГАМК — гамма-аминомасляная кислота). Электрически управляемые каналы принято называть по иону, наиболее легко проходящему через данный канал.

Функционируя, белки обычно изменяют свою форму. Такие изменения формы, называемые конформационными, особенно ярко выражены у сократимых белков, ответственных за движение клеток, но они не менее важны и для многих ферментов и других белков. Конформационные изменения канальных белков составляют основу воротных механизмов, поскольку они обеспечивают открывание и закрывание канала за счет малых перемещений частей молекулы, расположенных в критическом месте и позволяющих блокировать или освобождать пору.

Когда электрически или химически управляемые каналы открываются и пропускают ионы, возникает электрический ток, который можно измерить. Совсем недавно в нескольких случаях удалось зарегистрировать ток, проходящий через одиночный канал, так что его открывание и закрывание можно было исследовать непосредственно. Обнаружилось, что время, на протяжении которого канал остается открытым, варьирует случайным образом, так как открывание и закрывание канала есть результат некоторых конформационных изменений белковой молекулы, встроенной в мембрану. Наличие случайности в воротных процессах проистекает из случайных столкновений молекул воды и других молекул со структурными элементами канала.

Кроме ионных насосов и каналов для выполнения основных функций нервной системы нейронам требуются и другие мембранные белки.

Одним из таких необходимых белков является фермент аденилатциклаза, который регулирует внутриклеточную концентрацию циклического аденозинмонофосфата (циклического АМФ). Циклические нуклеотиды, такие, как циклический АМФ, существенны для ряда клеточных функций, механизмы которых в деталях еще не изучены. Мембранный фермент аденилатциклаза, по-видимому, состоит из двух основных субъединиц — каталитической и регуляторной. Каталитическая субъединица способствует образованию циклического АМФ. Различные регуляторные субъединицы, которые, как полагают, физически обособлены от каталитических, могут связывать специфические молекулы (включая медиаторы, открывающие и закрывающие каналы) и тем самым контролировать содержание циклического АМФ в клетке. Регуляторные субъединицы разных типов называются в соответствии с теми молекулами, которые в физиологических условиях с ними связываются; одна из них, например, названа серотонинактивируемой аденилатциклазой. Известно, что аденилатциклаза и родственные ей мембранные ферменты выполняют внейронах ряд регуляторных функций, и точный механизм их действия является сейчас объектом интенсивного исследования.

В процессе эмбриогенеза нервной системы клетка должна уметь узнавать другие клетки, чтобы рост каждой из них происходил в «правильном» направлении и заканчивался образованием «правильных» связей. Процесс узнавания клетки клеткой и формирования на основе этого соответствующей структуры определяется мембранными белками специального класса, связанными с особыми углеводами. Изучение белково-углеводных комплексов, ответственных за узнавание клеток, находится пока на ранней стадии.

Внутренние мембранные белки, о которых я здесь рассказываю, не распределяются по всей клеточной мембране однородно и не присутствуют в равных количествах во всех нейронах. Плотность и тип белка определяются потребностями клетки и различны для разных нейронов и для разных частей одного и того же нейрона. Так, плотность каналов определенного типа варьирует от 0 до 10000 на квадратный микрон. Аксоны обычно не имеют химически управляемых каналов, тогда как в постсинаптических мембранах дендритов плотность таких каналов лимитируется лишь упаковкой канальных молекул. В то же время мембраны дендритов обычно имеют мало электрически управляемых каналов, тогда как в мембранах аксонов их плотность может доходить в некоторых местах до 1000 каналов на квадратный микрон.

Внутренние мембранные белки синтезируются первоначально в теле нейрона и хранятся в мембране в небольших пузырьках. Для перемещения таких пузырьков от места их синтеза к месту их функционирования нейроны имеют специальную транспортную систему. Эта система, по-видимому, перемещает пузырьки небольшими скачками с помощью сократимых белков. Достигнув места своего назначения, белки встраиваются в поверхностную мембрану, где и функционируют до тех пор, пока не будут удалены оттуда и не распадутся внутри клетки. Точно не известно, каким образом клетки решают, куда какой мембранный белок поместить. Также неизвестен и механизм, который регулирует синтез, встраивание и разрушение мембранных белков. Метаболизм мембранных белков составляет одну из центральных проблем биологии клетки.

Каким образом свойства различных мембранных белков, которые я здесь обсуждаю, связаны с функцией нейрона? Чтобы ответить на этот вопрос, вернемся к рассмотрению нервного импульса и проанализируем более детально те молекулярные процессы, которые лежат в основе его генерации и распространения. Как мы видели, внутренность нейрона имеет отрицательный потенциал в 70 мВ относительно наружной среды. Этот «потенциал покоя» является следствием ионных градиентов, создаваемых натриевым насосом, и присутствием в клеточной мембране некоторого класса постоянно открытых каналов, избирательно проницаемых для ионов калия. Насос выталкивает наружу ионы натрия, обменивая их на ионы калия, и делает внутриклеточную среду в 10 раз богаче ионами калия по сравнению с наружной средой. Калиевые каналы мембраны позволяют ионам калия, находящимся в непосредственной близости от мембраны, выходить из клетки совершенно свободно. В состоянии покоя проницаемость мембраны для ионов натрия низка, так что не существует почти никакого встречного потока ионов натрия из внешней среды во внутреннюю, несмотря на то что внешняя среда в 10 раз богаче ионами натрия, чем внутренняя. В связи с этим поток калия создает дефицит положительных зарядов на внутренней поверхности клеточной мембраны и избыток положительных зарядов на ее наружной поверхности. В результате возникает разность потенциалов в 70 мВ, причем внутренность клетки имеет отрицательныйпотенциал по отношению к наружной среде.

Распространение нервного импульса определяется присутствием в мембране нейрона электрически управляемых натриевых каналов, открывание и закрывание которых ответственно запотенциал действия. Каковы характеристики этих важных канальных молекул? Хотя с химической точки зрения натриевый канал еще не достаточно хорошо изучен, известно, что он является белком с молекулярным весом в диапазоне от 250000 до 300000. Диаметр поры этого канала составляет 0,4-0,6 нм; через такую пору могут проходить ионы натрия, связанные с молекулами воды. На поверхности канала имеется много заряженных групп, размещенных в критических точках. Эти заряды обусловливают наличие большого электрического дипольного момента, который меняется по направлению и по величине в соответствии с конформационными изменениями канала, сопровождающими переход из закрытого состояния в открытое.

Поскольку поверхностная мембрана клетки очень тонка, трансмембранная разность потенциалов в 70 мВ создает внутри покоящейся мембраны сильное электрическое поле порядка 100 кВ/см. Подобно тому как магнитные диполи имеют тенденцию ориентироваться вдоль силовых линий магнитного поля, электрические диполи белка натриевого канала стремятся встать параллельно линиям электрического поля мембраны. Изменения напряженности электрического поля могут переводить канал из закрытого состояния в открытое. По мере того как под влиянием входящих ионов натрия внутренняя поверхность мембраны становится все более положительной, натриевые каналы все дольше находятся в открытом состоянии. Процесс открывания натриевых каналов под влиянием изменения потенциала мембраны называют активацией натриевых каналов.

Этот процесс останавливается благодаря развитию другого процесса, названного натриевой инактивацией. Трансмембранная разность потенциалов, явившаяся причиной открывания натриевых каналов, затем переводит их в особое закрытое конформационное состояние, отличное от состояния, характерного для канала в покое. Второе закрытое состояние, названное состоянием инактивации, развивается медленнее, чем процесс активации, так что до того, как каналы закроются под влиянием инактивации, они остаются короткое время открытыми. В состоянии инактивации каналы пребывают несколько миллисекунд, а затем возвращаются в нормальное состояние покоя.

Полный цикл активации и инактивации в норме включает в себя открывание и закрывание тысяч натриевых каналов. Как можно узнать, с чем связано увеличение общей мембранной проницаемости: с открыванием и закрыванием некоторого числа каналов по закону «все или ничего» или с работой каналов, у каждого из которых проницаемость может меняться градуально? Частичный ответ на этот вопрос был получен с помощью новой методики, которая соотносит флуктуации мембранной проницаемости с вероятностным характером конформационных изменений канальных белков. Можно много раз вызывать открывание канала и вычислить среднюю проницаемость за какое-то время, а также точные ее значения в каждом испытании. Флуктуации точных значений проницаемости относительно среднего значения укладываются в 10% или около того. Анализ этих флуктуации показывает, что натриевые каналы работают по закону «все или ничего» и что открывание каждого канала увеличивает проводимость мембраны на 8-10-12 Ом-1. Одним из принципиальных моментов для понимания работы нейрона является необходимость развития сколько-нибудь полной теории, которая опишет поведение натриевых каналов и свяжет его с молекулярной структурой канального белка.

Как я уже кратко отметил выше, аксоны также имеют электрически управляемые калиевые каналы, которые помогают прекращать нервный импульс, позволяя ионам калия выходить из аксона, противодействуя тем самым входящему потоку ионов натрия. В теле нейрона ситуация еще более сложная, поскольку мембрана там пронизана каналами пяти типов. Различные каналы открываются с различными скоростями, остаются открытыми на протяжении разных интервалов времени и являются избирательно проницаемыми для разных ионов (натрия, калия и кальция).



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2016-04-02 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: