Синтез наночастиц золота




 

Для химического синтеза наночастиц золота «мокрым способом» преимущественно применяют реакцию окисления-восстановления:

Au3+ + восстановитель ® Au0 ® nAu0 (нанозолото) (1)

I II

Этап I в этой реакции соответствует элементарному акту окисления-восстановления. Обычно в качестве исходного вещества используют тетрахлорауровую кислоту – HAuCl4.nH2O. Восстановителями могут быть самые разнообразные реагенты: водород и водородсодержащие соединения (например, тетрагидробораты), фосфор, хлористое олово, цитрат натрия, гидразин, спирты, этиленгликоль, крахмал, глюкоза, аскорбиновая кислота и другие. Восстановление проводят в присутствии стабилизирующих органических веществ – лигандов, которые могут также наделить наночастицы способностями к биораспознаванию, транспортировке и катализу.

В этапе II следует выделить ступени:

nAu0 ® [Au0]n + mL ® [Au0]nLm (2).

IIа IIб

Ступень IIа соответствует стадии роста наночастицы; здесь лиганды формально не участвуют в процессе, однако, их присутствие сказывается на размере частиц и придании им соответствующей формы. На стадии IIб происходит окончательная стабилизация наночастицы. Кинетические параметры реакций зависят от природы восстанавливающего агента и условий реакции.

В данной лабораторной работе для синтеза наночастиц золота используется цитратный метод. Отличительной особенностью этого метода является то, что цитрат-анион одновременно выступает в роли стабилизатора и восстановителя, поэтому концентрация этого иона играет критическую роль: её изменение одновременно влияет на скорость восстановления и на процессы роста частиц. Кроме того, в результате реакции в растворе образуются продукты окисления цитрат-аниона – 1,3-ацетондикарбоновая и итаконовая кислоты:

H3C6H5O7 + HAuCl4 ® Au + CO2 + H2C5H2O4 + H2C5H2O4 +HCl,

где:

H3C6H5O7 – (HOOC)-CH2-C(OH)(COOH)-CH2-(СOOH) – лимонная кислота;

H2C5H2O4 – H2C = C(СООН) –CH2COOH – итаконовая (метиленянтарная, метиленбутандиовая) кислота;

H2C5H2O4 – H2C = C(СООН) –CH2COOH – 1,3-ацетондикарбоно-вая кислота.

Присутствие этих кислот в растворе может вызвать необходимость дополнительной очистки золя.

Во время синтеза цвет реакционной смеси изменяется. Первоначально слабо желтая окраска иона AuCl4-исчезает, раствор становится темно синим, далее фиолетовым и окончательно рубиново-красным (наночастицы Au). Изменение цвета раствора указывает на структурные превращения, происходящие в системе. Методом пропускающей электронной микроскопии установлено, что бесцветный раствор, образующийся сразу после добавления цитрата, содержит золотые нанокластеры диаметром 3-5 нм (Рис.1а) [10]. В тёмно синем растворе формируется сложная структура, которую можно описать как разветвленная сеть из нанопроволок с диаметром 5 нм (Рис.1b). В стадии тёмно фиолетового цвета возникают небольшие сегменты, которые образуются в результате разрыва основной разветвленной сети нанопроволок (Рис.1c). Сферические наночастицы с диаметром 10-13 нм начинают откалываться от нанопроволок, когда раствор становится фиолетовым (Рис.1d,e). Окончательно золотые наносферы формируются, когда раствор становится рубиново- красным (Рис.1f).

Как первичные нанокластеры само собираются (self-assemble) в линейные цепочечноподобные образования – нанопроволоки? Согласно экспериментальным данным первичные нанокластеры имеют усеченную октаэдрическую геометрию с четкими плоскими гранями [11]. Выдвинута гипотеза [10], что линейные формирования возникают в результате слияния этих наночастиц путём планарного контакта между гранями решетки. Усеченная угловая поверхность октаэдров запрещает объединение соседних граней в силу стерических препятствий. Этот запрет и приводит к формированию линейной структуры (Рис.2).

a b c

d e f

Рис.1. Изображения золотых наночастиц на разных стадиях синтеза, полученные с помощью просвечивающего электронного микроскопа [10]

 

Рис.2. Соединение двух смежных граней запрещено стерическими препятствиями [10]

 

По мере протекания процесса нанопроволоки увеличиваются в толщине, и, когда их диаметр приближается к ~8нм, система становится нестабильной и начинает фрагментироваться. К этому времени концентрация ионов AuCl4-истощается, и цитрат-ионы оказываются доминирующими. Они покрывают наночастицы, сообщая им отрицательный заряд, вызывающий сильный отталкивающий эффект, способствующий раскалыванию линейной структуры и образованию сферической формы. Для окончательного созревания золя и полной дезинтеграции частиц необходимо выдержать раствор при комнатной температуре в течение 10-15 мин. Благодаря этой процедуре предотвращается возможность сохранения слипшихся частиц в виде так называемых близнецов. На рис.3 представлена схема строения получаемого золя.

Рис.3. Слева: микроснимок наночастиц золота диаметром 13 нм. Справа: иллюстрация поверхности наночастиц золота. Каждая наночастица состоит из ~ 500 000 атомов Au. Цитрат-анионы покрывают поверхность наночастицы [12]

 



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2016-04-02 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: