Химические свойства казеина




 

Около 95% казеина находится в молоке в виде сравнительно крупных коллоидных частиц — мицелл — которые имеют рыхлую структуру, они сильно гидратированы.

В растворе казеин имеет ряд свободных функциональных групп, которые обуславливают его заряд, характер взаимодействия с Н2О (гидрофильность) и способность вступать в химические реакции.

Носителями отрицательных зарядов и кислых свойств казеина является β и γ-карбоксильные группы аспаргиновой и глютаминовой кислот, положительных зарядов и основных свойств — å-аминогрупп лизина, гуанидовые группы аргинина и имидазольные группы гистидина. При рН свежего молока (рН 6,6) казеин имеет отрицательный заряд: равенство положительных и отрицательных зарядов (изоэлектрическое состояние белка) наступает в кислой среде при рН 4,6-4,7; следовательно в составе казеина преобладают дикарбоновые кислоты, кроме того, отрицательный заряд и кислые свойства казеина усиливают гидроксильные группы фосфорной кислоты. Казеин принадлежит к фосфоропротеидам — в своем составе содержит Н3РО4 (органический фосфор), присоединенную моноэфирной связью к остаткам серина.

Гидрофильные свойства зависят от структуры, заряда молекул, рН среды, концентрации в ней солей, а также других факторов.

Своими полярными группами и пептидными группировками главных цепей казеин связывает значительное количество Н2О — не более 2 ч. на 1 ч. белка, что имеет практическое значение, обеспечивает устойчивость частиц белка в сыром, пастеризованном и стерилизованном молоке; обеспечивает структурно-механические свойства (прочность, способность отделить сыворотку) кислотных и кислотно-сычужных сгустков, образующихся при выработке кисломолочных продуктов и сыра, т. к. в процессе высокотемпературной тепловой обработке молока денатурируется β-лактоглобулин взаимодействуя с казеином и свойства гидрофильные казеина усиливаются: обеспечивая влагоудерживающую и водосвязывающую способность сырной массы при созревании сыра, т. е. консистенция готового продукта.

Казеин – амфотерин. В молоке он имеет явно выраженные кислые свойства.

 

2+

R R

СООН СОО-

 

Его свободные карбоксильные группы дикарбоновых аминокислот и гидроксильные группы фосфорной кислоты взаимодействуя с ионами солей щелочных и щелочноземельных металлов (Na+, K+, Ca+2, Mg+2) образуют казеинаты. Щелочные растворители в Н2О, щелочноземельные нерастворимы. Казеинат кальция и натрия имеют большое значение при производстве плавленых сыров, при котором часть казеината кальция превращается в пластичный эмульгирующий казеинат натрия, который все шире используется в качестве добавки при производстве пищевых продуктов.

Свободные аминогруппы казеина взаимодействуют с альдегидом, например с формальдегидом:

 


CH2OH

R − NH2 + 2CH2O → R − N

CH2OH

 

Эту реакцию используют при определении белка в молоке методом формального титрования.

Взаимодействие свободных аминогрупп казеина (в первую очередь S-аминогрупп лизина) с альдегидными группами лактозы и глюкозы объясняется первая стадия реакции меланоидинообразования:

 

O

       
   


R - NH2 + C – R R - N = CH - R + H2O

альдозиламин

H

 

Для практики молочной промышленности особый интерес представляет прежде всего способность казеина к коагуляции (осаждению). Коагуляцию можно осуществить с помощью кислот, ферментов (сычужного), гидроколлоидов (пектин).

В зависимости от вида осаждения различают: кислотный и сычужный казеин. Первый содержит мало кальция, так как ионы Н2 выщелачивают его из казеинового комплекса, сычужный казеин — это смесь наоборот казеината кальция и он не растворяется в слабых щелочах в противоположность кислотному казеину. Различают два вида казеина, получаемого осаждением кислотами: кисломолочный творог и казеин-сырец. При получении кисломолочного творога кислота образуется в молоке биохимическим путем — культурами микроорганизмов, причем отделению казеина предшествует стадия гелеобразования. Казеин-сырец получают путем добавления молочной кислоты или минеральных кислот, выбор которых зависит от назначения казеина, так как под их воздействием структура осажденного казеина различна: молочнокислый казеин — рыхлый и зернистый, сернокислотный — зернистый и слегка сальный; соляно-кислый — вязкий и резинообразный. При осаждении образуются кальциевые соли применяемых кислот. Труднорастворимый в воде сульфат кальция нельзя полностью удалить при промывке казеина. Казеиновый комплекс довольно термоустойчив. Свежее нормальное молоко с рН 6,6 свертывается при температуре 150оС — за несколько секунд, при температуре 130оС более чем за 20 минут, при 100оС — в течение нескольких часов, поэтому молоко можно стерилизовать.

С коагуляцией казеина связана его денатурация (свертывание), она появляется в виде хлопьев казеина, либо в виде геля. При этом хлопьеобразование получает название коагуляции, а гелеобразование — свертывание. Видимым макроскопическим изменениям предшествуют субмикроскопические изменения на поверхности отдельных мицелл казеина, они наступают при следующих условиях:

— при сгущении молока — казеин мицеллы образует слабо связанные друг с другом частицы. В сгущенном молоке с сахаром этого не наблюдается;

— при голодании — мицеллы распадаются на субмицеллы, шарообразная форма их деформируется;

— при нагревании в автоклаве > 130оС — происходит разрыв главных валентных связей и увеличивается содержание небелкового азота;

— при сушке распылительной — форма мицелл сохраняется при контактном способе — форма их изменяется, что влияет на плохую растворимость молока;

— при сублимационной сушке — изменение незначительны.

Во всех жидких молочных продуктах видимая денатурация казеина крайне нежелательна.

В молочной промышленности явление коагуляции казеина вместе с сывороточными белками получают копреципитаты, используют СаСl2, NH2 и гидроокись кальция.

Все процессы денатурации казеина, кроме высаливания считаются необратимыми, но это верно только в том случае, если под обратимостью процессов понимается восстановление нативных третичной и вторичной структур белков молока. Практическое значение имеет обратимое поведение белков, когда они из осажденной формы могут переходить снова в коллоидно-дисперсное состояние. Сычужное свертывание в любом случае представляет собой необратимую денатурацию, так как при этом расщепляются главные валентные связи. Сычужные казеины не могут перейти вновь в первоначальную коллоидную форму. И наоборот, обратимость может способствовать гелеобразованию пара — Н-казеина сублимационной сушки при добавлении концентрированного раствора поваренной соли. Обратим также процесс образования мягкого геля, обладающего тиксотропными свойствами, в УВТ-молоке при комнатной температуре. На начальной стадии легкое встряхивание приводит к пептизации геля. Осаждение кислоты казеина — обратимый процесс. В результате добавления соответственного количества щелочи казеин в виде казеината снова переходит в коллоидный раствор. Хлопьеобразование казеина имеет также большое значение с точки зрения физиологии питания. Мягкий сгусток образуется при добавлении слабокислых компонентов, например, лимонной кислоты, или удалении части ионов кальция методом ионообмена, а также при предварительной обработке молока протеолептическими ферментами, т. к. такой сгусток образует в желудке тонкий мягкий сгусток.

 


Гидролиз белков молока

 

По молекулярному весу казеина и других молочных белков можно заключить, что белковая молекула является сложным соединением. Молекулы белков молока под влиянием кислот, щелочей, а особенно ферментов протеаз, выделяемых молочнокислыми и другими бактериями, гидролизуются с образованием веществ меньшего молекулярного веса, вплоть до аминокислот. Естественно, что при гидролизе белка не сразу получаются конечные продукты распада, а образуются промежуточные соединения.

Конечными продуктами гидролиза белков являются альфа-аминокислоты, у которых при первом углеродном атоме после кислотной группы вместо одного атома водорода находится аминная группа. Число аминокислот в белках доходит до 30.

Русский биохимик А.Я.Данилевский около 80 лет назад впервые высказал предположение, что связь аминокислот в белках может быть осуществлена посредством пептидной связи, получаемой при взаимодействии двух аминокислот

 

NH2 – CH2 – COOH + NH2 – CH2 – COOH => NH2 – CH2 – CO – NH – CH2 – COOH + H2O

Аминоуксусная кислота Дипептид

 

Из двух аминокислот получается дипептид, который, имея также свободные аминогруппу и карбоксильную (кислотную), вступает в реакцию с новой аминокислотой, давая трипептид и т.д. В результате, из большого числа аминокислот могут образовываться полипептиды.

Синтез подобного рода полипептидов осуществил немецкий химик Э.Фишер, утверждавший, что белки построены из аминокислот, соединенных только пептидными связями.

Взгляды Э.Фишера на строение белковых веществ считали правильными несколько десятилетий, однако постепенно накапливались факты, расходившиеся с этой теорией. Так, было установлено, что белки пищи в пищеварительном тракте человека подвергаются воздействию ряда ферментов – вначале пепсина в желудке, затем трипсина и полипептидаз в кишечнике. Если бы в белках имелись только пептидные связи, то не требовалось бы несколько ферментов. Работы акад. Н.Д.Зелинского и проф. В.С.Садикова показали, что в действительности аминокислоты в белках связаны не только пептидной связью, но и другими, среди которых имеет большое значение дикетопиперазиновая связь.

Дикетопиперазиновая связь образуется при реакции двух аминокислот с выделением двух частичек воды, в результате чего появляется циклическое соединение.

Затем в белках между аминокислотами были установлены дисульфидные связи (-S-S-), сложноэфирные, водородные, амидиновые (-N=C<); последние установлены проф. Н.И.Гавриловым. Таким образом, в настоящее время белковая молекула представляется в виде сложного соединения, в котором основными формами связи между аминокислотами являются пептидные и дикетопиперазиновые.

Все формы связи в белках получаются в результате выделения молекул воды из аминокислот; следовательно, обратное присоединение молекул воды по тем же связям вызовет гидролиз (распад) белковой молекулы.

Молочные белки при гидролизе дают соединения с постепенно уменьшающимся молекулярным весом: белок – альбумозы – пептоны – полипептиды – дипептиды – аминокислоты.

Альбумозы – крупные осколки белков, сравнительно мало отличающиеся от них, растворимые в воде, дают коллоидные растворы.

Пептоны – продукты гидролиза альбумоз, значительно отличающиеся от белков, легко растворяются в воде.

Полипептиды – продукты дальнейшего гидролиза – представляют собой несколько аминокислот, соединенных пептидными связями. Полипептиды растворимы в воде.

Дипептиды – соединения двух аминокислот.

В сыре и других молочных продуктах имеются соединения, полученные в процессе гидролиза белков. В большинстве случаев они повышают питательную ценность продуктов, так как делают азотистые вещества болееусвояемые.

 



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2020-03-31 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: