Классическое определение вероятности




Одним из основных понятий теории вероятностей является понятие случайного события. Под событием будем понимать любое явление, которое происходит в результате осуществления определенного комплекса условий. Осуществление этого комплекса условий называют экспериментом (опытом, испытанием). Событие называется достоверным, если оно непременно должно произойти при выполнении определенных условий. Событие называется невозможным, если оно заведомо не наступит при выполнении определенных условий. Событие называется случайным, если оно может либо произойти, либо не произойти при выполнении определенных условий. В теории вероятностей любое событие рассматривается как результат некоторого эксперимента. Поэтому события часто называют исходами. События будем обозначать заглавными буквами латинского алфавита: A, B, C и т.д.

События A и B называются несовместными, если наступление одного из них исключает возможность появления другого. Например, при подбрасывании монеты могут наступить два события: выпадет «орел» или «решка». Однако, одновременно эти события, при одном подбрасывании, появится не могут. Если в результате испытания возможно одновременное появление событий A и B, то такие события называются совместными. Например, выпадение четного числа очков при подбрасывании игральной кости (событие А) и числа очков, кратного трем (событие В) будут совместными, ибо выпадение шести очков означает наступление и события А, и события В.

Событие А называется независимым от события В, если вероятность появления события А не зависит от того, произошло событие В или нет; в противном случае такие события называются зависимыми. Например, вероятность события того, что во второй раз из урны, содержащей белые и черные шары, будет вынут белый шар, не зависит от того, какой шар был вынут в первый раз, если он был возвращен обратно. Однако если первый шар не был возвращен обратно, то результат второго извлечения уже будет зависеть от первого, ибо состав шаров в урне уже изменится в зависимости от результата первого извлечения.

Чтобы охарактеризовать вероятность события числом, нужно установить единицу измерения вероятности. Здесь поступают следующим образом: достоверному событию приписывают вероятность, равную единице; невозможному – равную нулю. Таким образом, вероятность P (A) события А должна удовлетворять следующим условиям:

1о. P (A)=1, если Адостоверное событие;

2о. P (A)=0, если Аневозможное событие;

3о. 0< P (A)<1, если Аслучайное событие.

Классическое определение вероятности основано на понятии равновозможности (или равновероятности). Это понятие относится к числу первичных, не подлежащим формальному определению. Оно лишь поясняется рядом простых и доступных примеров. Например, выпадение одной из сторон монеты или одной из граней игральной кости – равновозможные события. Это утверждение опирается на повседневную практику и симметрию изучаемого объекта. Симметрия возможных исходов чаще всего наблюдается в искусственно организованных опытах, где приняты специальные меры для ее обеспечения (например, тасовка карт или костей домино, которая для того и производится, чтобы каждая из них могла быть выбрана с одинаковой вероятностью; или же приемы случайного выбора группы изделий для контроля качества в производственной практике). В таких опытах подсчет вероятностей производится проще всего. Не случайно первоначальное свое развитие теория вероятностей получила на материале азартных игр.

Говорят, что несколько событий образуют полную группу, если в результате опыта неизбежно должно появится хотя бы одно из них. Примеры событий, образующих полную группу: 1) появление «1», «2», «3», «4», «5», «6» очков при бросании игральной кости; 2) «два попадания», «два промаха», «одно попадание» при двух выстрелах по мишени; 3) «появление хотя бы одного белого», «появление хотя бы одного черного» шара при вынимании двух шаров из урны. Несовместные события, образующие полную группу, называются элементарными событиями (или элементарными исходами). Отметим, что события первого и второго примеров являются элементарными, а третьего – нет, т.к. они совместны.

Элементарные исходы, в которых интересующее нас событие наступает, называются благоприятствующими этому событию. Например, при бросании одной игральной кости для события, состоящего в том, что выпадет не более двух очков, благоприятствующими элементарными исходами будут выпадение «1» или «2» очков.

Классическое определение вероятности: вероятностью события А называется отношение числа m благоприятствующих этому событию исходов к общему числу n всех равновозможныхнесовместных элементарных исходов, образующих полнуюгруппу:

(1.1)

Для подсчета вероятностей по классической формуле обычно используют методы комбинаторики.

Комбинаторика – это раздел математики, посвященный решению задач выбора и расположения элементов в соответствии с каким-либо правилом. При решении комбинаторных задач используются два правила: принцип умножения и принцип сложения.

Принцип умножения. Если элемент А можно выбрать из некоторого множества m способами и если после каждого такого выбора элемент B можно выбрать n способами, то пара элементов (А,В) в указанном порядке может быть выбрана (m×n) способами.

Пример 1.1. Из пункта А в пункт В ведут 3 дороги, а из пункта В в пункт С – 4 дороги. Сколькими способами можно совершить поездку из А в С через В?

Решение. В пункте А есть 3 способа выбора дороги в пункт В, а в пункте В есть 4 способа попасть в пункт С. Согласно принципу умножения, существует 3×4=12 способов попасть из пункта А в пункт С.

Принцип умножения легко обобщается на случай произвольного конечного множества.

Пример 1.2. Сколько четырехзначных чисел можно составить из цифр: 1, 2, 3, 4 и 5, если: а) цифры не повторяются; б) повторение допустимо; в) числа должны быть нечетные и без повторения.

Решение. а) Первую цифру можно выбирать 5-ю способами. Так как в числе цифры не повторяются, то вторую цифру уже можно выбрать из четырех оставшихся 4-мя способами. Далее получаем, что третью цифру можно выбрать 3-мя способами и четвертую – двумя. Таким образом, число возможных четырехзначных чисел равно N =5×4×3×2=120.

б) Так как повторения допустимы, то каждую цифру можно выбирать каждый раз из 5 имеющихся цифр, т.е. пятью способами. Тогда число возможных чисел равно N =5×5×5×5=54=625.

в) У нечетного числа последняя цифра нечетная, т.е. в данном случае может быть либо 1, либо 3, либо 5. Поэтому на это место можно поставить любую из этих трех чисел. После этого на оставшиеся места можно поставить: четыре цифры, три цифры и две цифры, ибо никакие из пяти цифр нельзя использовать более одного раза. Таким образом, N =3×4×3×2=72.

Принцип сложения. Если элемент А можно выбрать из некоторого множества m способами, а другой элемент B – n способами, причем выборы А и В таковы, что взаимно исключают друг друга и не могут быть выбраны одновременно, то выбор какого-либо одного из этих элементов (либо А, либо В) можно осуществить (m+n) способами.

Пример 1.3. Имеется 20 изделий 1-го сорта и 30 изделий 2-го сорта. Необходимо выбрать два изделия одного сорта. Сколько способов выбора возможно в данной ситуации, если учитывается порядок выбора изделий?

Решение. По принципу умножения два изделия 1-го сорта можно выбрать 20×19=380 способами. Аналогично два изделия 2-го сорта можно выбрать 30×29=870 способами. Согласно условию задачи следует выбирать два изделия одного сорта, не важно какого, т.е. либо 1-го, либо 2-го. Эти действия взаимно исключают друг друга. Поэтому общее число способов выбора изделий одного сорта равно 380+870=1250.

Существует две принципиально различные схемы выбора. В первой схеме выбор осуществляется без возвращения элементов. Это означает, что в выборке невозможны повторения элементов. Во второй схеме выбор осуществляется по-элементно с обязательным возвращением отобранного элемента при каждом шаге. Это означает, что в выборке возможны повторения.

После того, когда выбор тем или иным способом осуществлен, отобранные элементы могут быть либо упорядочены, либо неупорядочены. В первом случае выборки, состоящие из одних и тех же элементов, но отличающиеся порядком следования этих элементов, объявляются различными. Во втором случае порядок следования элементов не принимается во внимание, и такие выборки объявляются тождественными. Число выборок в разных случаях будет определяться по-разному.

Набор Выбор Упорядоченный Неупорядоченный
Без возвращений (без повторений) Размещения Сочетания
С возвращением (с повторениями) Размещения с повторениями Сочетания с повторениями

Пусть имеется некоторое множество, содержащее n элементов. Выберем из этого множества k элементов без возвращения, но упорядочивая их по мере их выбора в последовательную цепочку. Такие цепочки называются размещениями.

Число размещений можно найти из принципа умножения. Первый элемент размещения можно выбрать n способами. Как только такой выбор будет сделан, останется (n –1) возможностей, чтобы выбрать второй элемент; после этого останется (n –2) возможностей для выбора третьего элемента и т.д.; для выбора k- го элемента будет (n–k+ 1) возможностей. По принципу умножения находим

. (1.2)

Легко понять, что .

Пример 1.4. В некоторой газете 12 страниц. Необходимо на страницах этой газеты поместить 4 фотографии. Сколькими способами это можно сделать, если ни одна страница газеты не должна содержать более одной фотографии?

Решение. Для размещения фотографий следует отобрать 4 различных страницы из 12 имеющихся. Затем нужно отобранные страницы упорядочить, т.е. определить, на какую страницу поместить первую фотографию, на какую – вторую и т.д. Полученная упорядоченная совокупность страниц является, согласно определению, размещением из 12 элементов по 4, а число таких размещений является искомым результатом:

.

Рассмотрим частный случай, когда k=n. Соответствующее этому случаю размещение называется перестановкой.

Отметим, что перестановки состоят из одних и тех же элементов, но отличаются между собой порядком. Число перестановок n различных элементов обозначают символом Pn и равно

(1.3)

Пример 1.5. Сколькими способами можно расставить девять различных книг на полке, чтобы определенные четыре книги стояли рядом?

Решение. Будем считать выделенные книги за одну книгу. Тогда уже для шести книг существует P 6=6!=720 перестановок. Однако четыре определенные книги можно переставить между собой P4=4!=24 способами. По принципу умножения имеем

P 6 P 4 = 720×24 = 17280.

Пусть опыт состоит в выборе k элементов без возвращения и без упорядочения из некоторого множества, содержащего n элементов. Исходами такого опыта будут подмножества, содержащие k элементов и отличающиеся друг от друга только составом. Получаемые при этом комбинации элементов называются сочетаниями.

Например, при выборе делегации в составе 3 человек из 30 студентов, очевидно, не надо учитывать порядок выбранных делегатов, т.к. все члены делегации равноправны. Поэтому каждый такой выбор будет сочетанием из 30 по 3. Однако, выбирая старосту, профорга и физорга из тех же студентов, порядок уже приходится учитывать. В этом случае каждый конкретный результат будет уже размещением из 30 по 3.

Сочетания можно вычислить по формуле

. (1.4)

Заметим, что , .

Пример 1.6. Сколькими способами можно составить комиссию в составе из трех человек из имеющихся 9 человек, 4 женщин и 5 мужчин, если: а) не важен пол членов комиссии; б) комиссия должна состоять из двух женщин и одного мужчины.

Решение. а) Из смысла задачи следует, что порядок выбора членов комиссии не играет роли. Здесь важен только состав. Тогда выбрать комиссию из трех человек из 9 имеющихся можно

способами.

б) Двух женщин из 4 имеющихся можно выбрать способами, а одного мужчину из 5 можно способами. Тогда общее количество способов выбора комиссии, в соответствии с принципом умножения, можно

способами.

Отметим, что при использовании сочетаний могут быть полезны следующие свойства:

10. (свойство симметрии),

20. ,

30. (свойство Паскаля).

Пусть опыт состоит в выборе с возвращением k элементов из некоторого множества, состоящего из n элементов, но без последующего упорядочения. Различными исходами такого опыта будут все возможные наборы, отличающиеся только составом. При этом отдельные наборы могут содержать повторяющиеся элементы. Например, при k= 4 наборы {1,1,2,1} и {2,1,1,1} неразличимы для данного эксперимента. Получающиеся в результате данного опыта комбинации называются сочетаниями с повторениями, а их общее число определяется формулой

(1.5)

Пример 1.7. В кондитерской имеется 3 вида пирожных. Сколькими способами можно купить 9 пирожных?

Решение. В задаче требуется найти число всевозможных групп по 9 элементов, которые можно составить из данных трех различных элементов, причем указанные элементы в каждой группе могут повторяться, а сами группы отличаются друг от друга хотя бы одним элементом. Это задача на отыскание числа сочетаний с повторениями из трех элементов по девять. Следовательно,

Пусть выбор k элементов из некоторого множества, состоящего из n элементов, производится с возвращением и с упорядочением их в последовательную цепочку. Различными исходами такого выбора будут всевозможные наборы (вообще говоря, с повторениями) отличающиеся либо составом элементов, либо порядком их следования. Например, множества {1,1,2,1}, {2,1,1,1}, {1,1,3,1} являются различными комбинациями. Получаемые в результате комбинации называются размещениями с повторениями, а их общее число определяется формулой:

(1.6)

Данная формула легко получается из принципа умножения.

Пример 1.8. В лифт восьмиэтажного дома вошли 5 пассажиров. Сколькими способами могут выйти пассажиры на каждом этаже, начиная со второго?

Решение. Задача сводится к распределению 5 пассажиров по 7 этажам (т.е. набор упорядоченный), причем возможны повторения (т.е. несколько пассажиров могут выйти на одном этаже). Таким образом, задача сводится к нахождению числа размещений с повторениями:

При вычислении вероятностей по классической схеме приходится решать фактически комбинаторные задачи. При решении конкретной комбинаторной задачи нужно вначале выяснить каким способом вы будете её решать, либо непосредственным применением принципов умножения и сложения, либо применением комбинаторных формул, но перед этим нужно выяснить какой вид комбинации имеется в задаче, важен ли в ней порядок или нет, допускаются повторения или нет.

Пример 1.9. В урне содержатся 3 синих, 5 красных и 2 белых шара. Из нее наудачу извлекаются сразу два шара. Найти вероятность того, что будут вынуты либо два белых шара, либо два разных цветных шара (т.е. и красный, и синий шары).

Решение. Поскольку в данной задаче неважен порядок, то для решения будем применять сочетания без повторения (шары не возвращаются обратно в урну). Найдем общее число возможных исходов:

Теперь найдем число благоприятствующих возможных исходов. Два белых шара можно вынуть m 1=C22=1 способом, а два разных цветных шара (и синий, и красный шары) можно вынуть m 2=C31×C51=3×5=15 способами. Тогда общее число благоприятствующих исходов, в соответствии с принципом сложения, равно m = m 1+ m 2 = 16. Таким образом,

Пример 1.13. Наудачу взятый телефонный номер состоит из 5 цифр. Какова вероятность, что в нем все цифры разные?

Решение. Всего имеется 10 цифр. Поскольку при составлении пятизначным номеров важен порядок и возможны повторения, то общее число возможных пятизначных номеров будет равно

Номера, у которых все цифры разные, – это размещения без повторений

Таким образом, искомая вероятность равна



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2016-04-02 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: