Определение 1. Ряд вида
, (37)
где функции определены на некотором множестве , называется кратным функциональным рядом, а суммы вида
называются его частными суммами.
Здесь и в последующем , , неравенства вида , означают соответственно , , а неравенство - что .
Определение 2. Ряд (37) называется сходящимся на множестве , если при каждом фиксированном кратный числовой ряд
сходится. Если ряд (37) сходится на , то функция
,
называется его суммой.
Частным случаем кратных функциональных рядов являются кратные степенные ряды.
Определение 3. Ряды вида
,
где - вообще говоря, комплексные числа, называются кратными степенными рядами.
Замена переменной , т. е. сводит этот ряд к простейшей форме:
.
На кратные степенные ряды переносятся все результаты, доказанные для двойных степенных рядов. Методы доказательств этих результатов остаются прежними. Усложнятся лишь записи при переходе к кратным рядам.
На кратные функциональные ряды легко переносится понятие равномерной сходимости, признак Вейерштрасса равномерной сходимости и т. п. Формально эти понятия и теоремы выглядят так же, как и для простых функциональных рядов.
Определение 4. Ряд (37), члены которого являются функциями, определенными на множестве , называются равномерно сходящимися на этом множестве, если последовательность его частных сумм равномерно сходится на , т.е. существует функция , определенная на такая, что для любого найдется номер , такой, что , .
Равномерную сходимость обозначают символически так: , .
Критерий Коши равномерной сходимости ряда. Для того чтобы ряд (37) равномерно сходился на множестве , необходимо и достаточно, чтобы для любого существовал такой номер , что для всех и всех целочисленных и всех выполнялось неравенство
|
здесь , , , .
Следствие. (необходимое условие равномерной сходимости).
Если ряд (37) равномерно сходится, то на .
Теорема Вейерштрасса. Пусть даны два ряда: функциональный (37), члены которого определены на множестве , и числовой
, , (38)
Если ряд (38) сходится и , то ряд (37) абсолютно и равномерно сходится на множестве .
Доказательства этих теорем проводятся так же, как для простых функциональных рядов.
Основываясь на этих теоремах, легко доказать также, как и для простых рядов следующие свойства.
Свойства простых степенных рядов.
Пусть степенной ряд
(39)
имеет область сходимости . Тогда
1) В любой замкнутой подобласти ряд (39) сходится равномерно.
2) Сумма степенного ряда (39) для всех является непрерывной функцией.
3) Если два степенных ряда и в окрестности точки имеют одну и ту же сумму, то эти ряды тождественны, т. е. .
4) Если степенной ряд (39) расходится в точке , то на луче его сходимость не может быть равномерной.
5) Если степенной ряд сходится в точке , то его сходимость равномерна на луче .
6) Степенной ряд (39) в прямоугольнике можно интегрировать почленно ()
.
7) Степенной ряд (39) внутри области сходимости можно почленно дифференцировать по каждой переменной.
8) Степенной ряд (39) по отношению к функции является ее рядом Тейлора.