Классификация и основные характеристики ИМС 1 глава




Вопрос 1

1.1. Электропроводимость полупроводников

Электропроводность – это свойство веществ проводить электрический ток. Электрический ток – есть направленное движение свободных носителей заряда. Электропроводность веществ количественно характеризуется удельным электрическим сопротивлением s (Ом.см), или определяется концентрацией n (см-3) свободных носителей заряда в веществе, т.е. числом электронов в единице обьема (эл/см3)

В зависимости от способности проводить электрический ток, все вещества делятся на три группы: проводники (металлы), полупроводники и диэлектрики.

Рис. 2.1

К полупроводникам принято относить материалы, у которых удельное электрическое сопротивление при комнатной температуре составляет 103 - 109 Ом.см. Важнейшим признаком полупроводников является сильная зависимость их электрического сопротивления от температуры, степени освещенности, уровня облучения ионизирующим излучением, количества примесей и т.д.

В настоящее время для изготовления полупроводниковых приборов в основном используются следующие полупроводники:

четырехвалентные - германий (Ge), кремний (Si) и арсенид галлия (AsGa);

трехвалентные - алюминий (Al), индий (Jn), бор (В);

пятивалентные – фосфор (P), сурьма (Sb), мышьяк (As).

Валентность вещества, определяет число электронов на внешней оболочке атома.

Все полупроводники можно разбить на две группы:

чистые, собственные, беспримесные или полупроводники i-типа – это полупроводники, состоящие из атомов одного сорта;

примесные или легированные – в них часть атомов собственного полупроводника заменяется на атомы другого сорта (полупроводника). Процесс введения примесей в полупроводник называется легированным. А, потому, примесные полупроводники называются легированными.

1.1.2. Собственные полупроводники

Атомы собственного полупроводника располагаются в пространстве в строго определённом порядке, образуя кристаллическую решётку. Она возникает за счёт обобществления валентных электронов соседними атомами (такая связь называется ковалентной). Плоская модель кристаллической решётки собственного четырехвалентного полупроводника приведена на рис.2.1.

В собственных полупроводниках при Т=00K свободных носителей заряда нет. Все электроны участвуют в образовании ковалентной связи, и полупроводник является диэлектриком. С повышением температуры электроны приобретают дополнительную энергию, и некоторые из них покидают ковалентные связи, становясь свободными. Незаполненная ковалентная связь заполняется одним из валентных электронов соседнего атома. На месте этого электрона образуется новая незаполненная связь, и далее процесс повторяется. Свободная ковалентная связь называется вакансией, её можно рассматривать, как свободный положительный носитель заряда, который называют дыркой. Процесс образования свободного электрона и дырки называется генерацией свободной электронно-дырочной пары. Свободные электроны, двигаясь по объёму полупроводника, теряют часть своей энергии и могут занимать место дырки. Этот процесс взаимного исчезновения электрона и дырки называется рекомбинацией. В результате рекомбинации электрон и дырка перестают существовать. В чистом беспримесном полупроводнике (их называют полупроводниками i – типа) всегда выполняется условие

, ,

где: ni и pi – соответственно концентрация электронов и дырок в полупроводнике; А - постоянный коэффициент; Т - температура по шкале Кельвина; - ширина запрещённой зоны (это энергия, которую должен приобрести электрон, чтобы разорвать ковалентную связь и стать свододным, она зависит от материала полупроводника). Она составляет 0,803 эВ для Ge, для Si - 1,12эВ, а для GaAs - 1,43эВ; k – постоянная Больцмана.

Чистые полупроводники при создании полупроводниковых приборов практически не используются, так как их свойства зависят только от температуры и других внешних факторов.

 

Вопрос 2

1.1.3. Примесные полупроводники

При создании полупроводниковых приборов обычно используют примесные полупроводники, поскольку их электропроводность в основном определяется концентрацией введенной примеси и лишь незначительно зависит от дестабилизирующих факторов. В зависимости от характера введенной примеси, примесные полупроводники бывают двух типов: p и n- типа.

Полупроводники n-типа. Их получают путём введения в собственный, обычно 4-х валентный полупроводник атомов 5-и валентной примеси. Каждый атом, такой примеси создает свободный электрон. Примесь, создающая свободные электроны, называется донорной.

Плоская модель кристалической решетки полупроводника с донорной примесью приведена на рис.. Атом примеси, занимая узел кристаллической решетки, оказывается в окружении атомов собственного полупроводника. Четыре электрона атома примеси идут на образование ковалентной связи с соседними атомами собственного полупроводника, а пятый благодаря малой энергии ионизации уже при невысокой температуре оказывается свободным.

Итак, в результате такого ухода электрона, в полупроводнике n-типа возникает два вида основных зарядов: электрон – свободный (подвижный) отрицательно заряженный электрон и неподвижный положительно заряженный ион донорной примеси. В целом, такой полупроводник остается электрически нейтральным.

В таком полупроводнике основными свободными носителями заряда являются электроны, их концентрация становится равной

nn=ND+ni@ND >>ni

Здесь ND - концентрация атомов донорной примеси, nn - концентрация электронов в полупроводнике n -типа, ni -концентрация электронов в собственном полупроводнике. Отсюда следует, что концентрация электронов в основном определяется концентрация атомов донорной примеси. Полупроводники в которых основными носителями являются электроны называют электронными или полупроводниками n - типа.

Концентрация дырок в полупроводнике n - типа определяется дырками, которые возникают в результате термогенерации в собственном полупроводнике, т.е. рn=pi.. Концентрация дырок в полупроводнике n - типа много меньше концентрации электронов. Поэтому дырки называют неосновными носителями.

Для электронного полупроводника (n - типа) справедливо соотношение nnpn=nipi=ni 2.

Полупроводники p-типа. В них в качестве примеси используются 3-х валентные вещества. В результате введения такой примеси каждый атом примеси отбирает (присваивает) электрон близлежащего атома собственного полупроводника, в результате чего в полупроводнике образуется дырка. такая примесь называется акцепторной.

Плоская модель кристаллической решётки полупроводника с акцепторной примесью приведена на рис.. Связь атома примеси с четвертым атомом собственного полупроводника оказывается незаполненной. Однако на нее сравнительно легко могут переходить электроны соседних атомов собственного полупроводника. В результате такого перехода образуется два заряда: дырка – свободный (подвижный) положительно заряженный заряд - дырка, на месте откуда ушел электрон и неподвижный отрицательно заряженный ион акцепторной примеси.

дырки являются основными свободными носителями заряда, их концентрация в основном равна концентрации ионов акцепторной примеси

pp=NA+pi@NA >>pi ,

где: pp- концентрация дырок в полупроводнике р- типа NA- концентрация атом акцепторной примеси, pi- концентрация дырок в собственном полупроводнике.

Электроны являются неосновными носителями заряда, их концентрация np определяется электронами ni образующимися в результате термогенерации собственного полупроводника, т.е. np=ni.

Для дырочного полупроводника (р- типа) справедливо соотношение nрpр=nipi=ni 2.

 

Вопрос 3

1.1.4. Токи в полупроводнике. Дрейф и диффузия

В полупроводнике возможны два механизма движения зарядов (создания тока): дрейф и диффузия.

Дрейф - это движение носителей заряда под влиянием электрического поля. Если между двумя точками есть разность потенциалов j, то градиент потенциала Е=dj/dx называется напряженностью поля.

Рассмотрим обьем полупроводника, в котором имеются свободные электроны и дырки, к которому, приложено внешнее напряжение U, создающее в нем электрическое поле напряженностью Е. Электроны движутся от меньшего потенциала к большему, а дырки навстречу. Плотность полного дрейфового тока состоит из электронной и дырочной составляющих:

,

где: - плотность полного дрейфового тока; и - электронная и дырочная составляющая ; -Vn, Vp средняя скорость электронов и дырок; qe, qp – заряд электронов и дырок в единице объма полупроводника; n, p – концентрация электронов и дырок в полупроводнике; е, -е – заряд дырки и электрона; n, р – подвижности электронов и дырок (m= V/ E); E- напряжённость электрического поля. Отсюда:

где - удельная электропроводность полупроводника.

Здесь – подвижности электронов и дырок; их значения для германия и кремния приведены в таблице 2.1.

Диффузия - это движение носителей под действием градиента концентрации. Если в полупроводнике в направлении х имеется не равномерное распределение концентрации заряда, то под действием теплового движения (которое направлено на выравнивание концентрации) возникнет движение зарядов из области высокой концентрации заряда в область низкой. Градиентом концентрации электронов называют производную по направлению - dn/dx, а градиентом концентрации дырок - dр/dх. Диффузия всегда происходит из области большей концентрации в область меньшей. Плотность тока диффузии дырок и электронов пропорциональна градиенту концентрации т.е.:

(2.13)

где q -заряд электрона, Dp и Dn - коэффициенты диффузии электронов и дырок. Подвижности и коэффициенты диффузии связаны соотношением Эйнштейна: Dp = jтmn, Dn = jтmp, где jт- температурный потенциал.

Если электроны и дырки движутся в одну сторону, то это токи встречные, поэтому и появляется знак минус в одной из формул (2.13).

В общем случае могут присутствовать все четыре составляющих, тогда плотность полного тока равна векторной сумме:

In.др +Ip.др+ In.диф+Ip.диф =0 (2.16)

Основные параметры процесса диффузии. Диффузия характеризуется:

а) Временем жизни неравновесных (избыточных) носителей заряда τn.

Если, за счёт какого-либо внешнего воздействия, в одной из областей полупроводника создается неравновесная концентрация носителей заряда n, превышающая равновесную концентрацию no, (разность ∆n = п-по называется избыточной концентрацией), то после отключения этого воздействия, за счет диффузии и рекомбинация, избыточный заряд будет убывать по закону n(t)= n0+(n-n0)e-t/t. Это приводит к выравниванию концентраций по всему объёму проводника. Время τ, в течение, которого избыточная концентрация ∆n уменьшится в e =2,72 раза - основание натуральных логарифмов), называется временем жизни неравновесных носителей.

б) Диффузионная длина.

Если в объме полупроводника левее х<0 создать и поддерживать избыточную концентрацию ∆n = п-по, то за счет диффузии она начнет проникать в область х>0, одновременно рекомбинируя, а следовательно убывая, по закону n(x)=n0+ ∆n e- x/Ln Расстояние, Ln на котором избыточная концентрация ∆n = п-по убывает от своего начального значения в e раз называется диффузионной длиной.

Диффузионная длина и время жизни неравновесных носителей заряда связаны соотношением

Ln =(Dn τn)1/2,

где Dn- коэффициент диффузии.

В полупроводниковых приборах размеры кристалла конечны, и на его границе (x=W) нерекомбинировавшие носители удаляются. Тогда граничные условия имеют вид n(x=0)=n0+∆n, n(x=W)=n0), где W— длина кристалла. Ecли W<<Ln, то решение уравнения (2.7) записывается в виде

n(x)=n0+∆n(1 - (x/W))

Закон распределения носителей в этом случае линеен (рис. 2.2).

 

Вопрос 4

1.2. Электрические переходы

1.2.1. Классификация электрических переходов

Электрический переход в полупроводнике – это граничный слой между двумя областями полупроводника с различным физическими свойствами.

1. Электронно дырочный или p-n переход - возникает на границе между двумя областями полупроводника с разным типом проводимости.

2. Электронно – электронный (n+-n) и дырочно – дырочный переходы (p+-p) переходы - возникают между областями полупроводника с различной удельной проводимостью. Знаком + - обозначена область, где концентрация свободных носителей заряда выше.

3. Переход на границе металл-полупроводник. Если на границе областей металл- полупроводник n-типа работа выхода электронов из полупроводника Ап/п меньше работы выхода электронов из металла Амп/п< Ам), то в области контакта электроны из полупроводника n-типа переходят в металл, образуя в нем избыточный отрицательный заряд, а приграничная область полупроводника n-типа оказывается заряженной положительно. Между зарядами возникает контактная разность потенциалов и электрическое поле, препятствующее переходу электронов в металл. В тоже время оно способствует переходу электронов из металла (неосновные носители) в полупроводник. Такой переход обладает выпрямительными свойствами и используется в диодах Шотки.

Если Ап/п> Ам, то приграничные области не обеднены, а обогащены электронами. Их сопротивление оказывается малым независимо от полярности напряжения на нем, выпрямительными свойствами такой переход не обладает. Такой переход называется омический контакт, он используется для создания металлических контактов к областям полупроводника.

4. Гетеропереход - возникает между двумя разнородными полупроводниками, имеющими различную ширину запрещенной зоной.

Переход на границе металл- диэлектрик- полупроводник (МДП).

Процессы, протекающие в системе МДП, связаны с эффектом электрического поля. Эффект поля состоит в изменении концентрации носителей заряда, а следовательно и проводимости в приповерхностном слое полупроводника под действием электрического поля создаваемого напряжением Е (рис..). В системе МДП протекание тока невозможно. Однако в отличие от металла заряд в полупроводнике не сосредоточен на поверхности, а равномерно распределен в обьеме полупроводника.

Режим обогащения и режим обеднения. Приповерхностный слой с повышенной концентрацией свободных носителей заряда называется обогащенным, а с пониженной концентрацией – обедненным.

При положительной полярности на металле относительно полупроводника в полупроводнике n-типа происходит обогащение приповерхностного слоя электронами, а в полупроводнике p-типа - обеднение его дырками.

При отрицательной полярности на металле относительно полупроводника в полупроводнике n-типа приповерхностный слой обедняется электронами, а в полупроводнике p-типа – обогащается дырками.

Слой инверсной проводимости. Если в режиме обеднения продолжить увеличение напряжения, то процесс обеднения продолжится, (обедненный слой будет расширяться). В то же время в приповерхностный слой устремятся неосновные носители заряда из глубины полупроводника. Когда их концентрация превысит концентрацию основных носителей заряда, то можно говорить о смене типа проводимости приповерхностного слоя. Этот приповерхностный слой, образованный неосновными носителями заряда, называется слоем инверсной проводимости.

Вопрос 5

1.2.2. p-n переход

Механическим контактом двух полупроводников с различным типом проводимости p-n переход получить невозможно, так как:

а) поверхности полупроводников покрыты слоем окислом, который являтся диэлектриком.

б) всегда существует воздушный зазор, превышающий межатомное расстояние.

Наиболее распространены два способа получения p-n перехода.

а) Метод сплавления.

б) Диффузионный метод.

Рассмотрим способ (б). Наиболее распространена планарная конструкция p-n переходов, при которой p-n переход создаётся путём диффузии на одну из сторон пластины полупроводника.

Тонкая пластина подвергается термообработке, в результате чего появляется слой диокиси кремния SiO2- изолятор.

Используя методы фотолитографии, удаляют определённые участки в слое SiO2, создавая окна и напыляя туда акцепторную примесь.

3. В результате диффузии атомов примеси в полупроводнике n -типа образуется p -область, а между ними p-n переход. p-n переход.

1.2.3. Образование p-n перехода. p-n переход в равновесном состояние

Рассмотрим подробнее процесс образования p-n перехода. Равновесным называют такое состояние перехода, когда отсутствует внешнее напряжение. Напомним, что в р-области имеются два вида основных носителей заряда: неподвижные отрицательно заряженные ионы атомов акцепторной примеси и свободные положительно заряженные дырки; а в n-области имеются также два вида основных носителей заряда: неподвижные положительно заряженные ионы атомов акцепторной примеси и свободные отрицательно заряженные электроны.

До соприкосновения p и n областей электроны дырки и ионы примесей распределены равномерно. При контакте на границе p и n областей возникает градиент концентрации свободных носителей заряда и диффузия. Под действием диффузии электроны из n области переходит в p и рекомбинирует там с дырками. Дырки из р области переходят в n-область и рекомбинируют там с электронами. В результате такого движения свободных носителей заряда в прграничной области их концентрация убывает почти до нуля и в тоже время в р области образуется отрицательный пространственный заряд ионов акцепторной примеси, а в n области положительный пространственный заряд ионов донорной примеси. Между этими зарядами возникает разность контактная разность потенциалов φк и электрическое поле Ек, которое препятствует диффузии свободных носителей заряда из глубины р и n областей через р-n переход. Таким образом область, объединённая свободными носителями заряда со своим электрическим полем и называется р-n переходом.

P-n-переход характеризуется двумя основными параметрами:

1. высота потенциального барьера. Она равна контактной разности потенциалов φк,. Это разность потенциалов в переходе, обусловленная градиентом концентрации носителей заряда. Это энергия, которой должен обладать свободный заряд чтобы преодолеть потенциальный барьер:

где k — постоянная Больцмана; е — заряд электрона; Т — температура; Nа и NД — концентрации акцепторов и доноров в дырочной и электронной областях соответственно; рр и рn„ — концентрации дырок в р- и n-областях соответственно; ni,- — собственная концентрация носителей заряда в нелигированном полупроводнике, jт=кТ/е - температурный потенциал. При температуре Т=270С jт=0.025В, для германиевого перехода jк=0,6В, для кремниевого перехода jк=0,8В.

ширина p-n-перехода – это приграничная область, обеднённая носителями заряда, которая располагается в p и n областях lp-n = lp + ln:

, отсюда ,

где ε — относительная диэлектрическая проницаемость материала полупроводника; ε0 — диэлектрическая постоянная свободного пространства.

Толщина электронно-дырочных переходов имеет порядок (0,1-10)мкм. Если , то и p-n переход называется симметричным, если , то и p-n переход называется несимметричным, причём он в основном располагается в области полупроводника с меньшей концентрацией примеси.

В равновесном состоянии (без внешнего напряжения) через р-п переход движутся два встречных потока зарядов (протекают два тока). Это дрейфовый ток неосновных носителей заряда и диффузионный ток, который связан с основными носителями заряда. Так как внешнее напряжение отсутствует и тока во внешней цепи нет, то дрейфовый ток и диффузионный ток взаимно уравновешиваются и результирующий ток равен нулю

Iдр + Iдиф = 0.

Это соотношение называют условие динамического равновесия процессов диффузии и дрейфа в изолированном (равновесном) p-n- переходе.

Поверхность, по которой контактируют p и n области называется металлургической границей. Реально она имеет конечную толщину - δм. Если δм<< lp-n, то p-n -переход называют резким. Если δм>> lp-n, то p-n -переход называют плавным.

Вопрос 6

1.2.4. Р-n переход при внешнем напряжении, приложенном к нему

Внешнее напряжение нарушает динамическое равновесие токов в p-n -переходе. p-n переход переходит в неравновесное состояние. В зависимости от полярности напряжения приложенного к областям в p-n -перехода возможно два режима работы.

1) Прямое смещение p-n перехода. Р-n переход считается смещённым в прямом направлении, если положительный полюс источника питания подсоединен к р-области, а отрицательный к n-области (рис..)

При прямом смещении, напряжения jк и U направлены встречно, результирующее напряжение на p-n переходе убывает до величины jк - U. Это приводит к тому, что напряженность электрического поля убывает и возобновляется процесс диффузии основных носителей заряда. Кроме того, прямое смещении уменьшает ширину p-n перехода, т.к. lp-n (jк – U)1/2. Ток диффузии, ток основных носителей заряда, становится много больше дрейфогово. Через p-n переход протекает прямой ток

Iр-n=Iпр=Iдиф+Iдр @Iдиф.

При протекании прямого тока основные носители заряда р-области переходят в n-область, где становятся неосновными. Диффузионный процесс введения основных носителей заряда в область, где они становятся неосновными, называется инжекцией, а прямой ток – диффузионным током или током инжекции. Для компенсации неосновных носителей заряда накапливающихся в p и n-областях во внешней цепи возникает электронный ток от источника напряжения, т.е. принцип электронейтральности сохраняется.

При увеличении U ток резко возрастает, - температурный потенциал, и может достигать больших величин т.к. связан с основными носителями концентрация которых велика.

Вопрос 7

1.2.4. Р-n переход при внешнем напряжении, приложенном к нему

Внешнее напряжение нарушает динамическое равновесие токов в p-n -переходе. p-n переход переходит в неравновесное состояние. В зависимости от полярности напряжения приложенного к областям в p-n -перехода возможно два режима работы.

2) Обратное смещение, возникает когда к р- области приложен минус, а к n-области плюс, внешнего источника напряжения (рис.).

Такое внешнее напряжение U включено согласно jк. Оно: увеличивает высоту потенциального барьера до величины jк + U; напряженность электрического поля возрастает; ширина p-n перехода возрастает, т.к. lp-n (jк + U)1/2; процесс диффузии полностью прекращается и через p-n переход протекает дрейфовый ток, ток неосновных носителей заряда. Такой ток p-n -перехода называют обратным, а поскольку он связан с неосновными носителями заряда, которые возникают за счет термогенерации то его называют тепловым током и обозначают - I0, т.е.

Iр-n=Iобр=Iдиф+Iдр @Iдр= I0.

Этот ток мал по величине т.к. связан с неосновными носителями заряда, концентрация которых мала. Таким образом, p-n перехода обладает односторонней проводимостью.

При обратном смещении концентрация неосновных носителей заряда на границе перехода несколько снижается по сравнению с равновесной. Это приводит к диффузии неосновных носителей заряда из глубины p и n-областей к границе p-n перехода. Достигнув ее неосновные носители попадают в сильное электрическое поле и переносятся через p-n переход, где становятся основными носителями заряда. Диффузия неосновных носителей заряда к границе p-n перехода и дрейф через него в область, где они становятся основными носителями заряда, называется экстракцией. Экстракция и создает обратный ток p-n перехода- это ток неосновных носителей заряда.

Величина обратного тока сильно зависит: от температуры окружающей среды, материала полупроводника и площади p-n перехода.

Температурная зависимость обратного тока определяется выражением , где - номинальная температура, - фактическая температура, - температура удвоения теплового тока .



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2016-08-20 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: