Классификация и основные характеристики ИМС 5 глава




Область 3. Uси > Uси.мах. Это область пробоя транзистора. Увеличение напряжения на стоке выше определенной величины приводит к электрическому пробою р-n- перехода у стокового конца канала, так как в этой части прибора к р- n-переходу приложено наибольшее обратное напряжение.

При напряжении Uзи=0 напряжение насыщения равно напряжению отсечки. Можно показать, что при положительных напряжениях на затворе напряжение насыщения определяется по формуле

1.1.

В выходных ВАХ кривая, соединяющая точки, соответствующие значениям Uси нас при разных значениях Uзи, является параболой, выходящей из начала координат (пунктирная линия на рис. 5.3).

Если управляющий р -n переход смеcтить в прямом направлении, ток стока увеличится. При этом резко возрастает входная проводимость прибора. Такой режим на практике не используют. Это не рабочий режим работы.

Передаточная ВАХ (стоко-затворная характеристика) (рис. 1.3) может быть легко получена из семейства выходных характеристик, если при фиксированном напряжении Uси отмечать величину напряжения Uзи и соответствующие ему значения Ic. Изменение напряжения Uси в пределах области насыщения мало влияет на поведение стокозатворной характеристики.

 

Вопрос 37

4.3. Полевые транзисторы с изолированным затвором

МДП- или МОП-транзистор представляет собой прибор, в котором металлический затвор изолирован слоем диэлектрика от канала, образованного в приповерхностном слое полупроводника. Принцип действия МДП транзистора основан на явлении управления пространственным зарядом полупроводника через слой диэлектрика.

Различают МДП-транзисторы с индуцированным и со встроенным каналом. В МДП-транзисторах с индуцированным каналом проводящий канал между истоком и стоком индуцируется (наводится) управляющим напряжением затвора. В этих транзисторах при разности потенциалов между истоком и затвором, равной нулю, электропроводность между стоком и истоком практически отсутствует.

4.3.1. МДП – транзистор с индуцированным каналом. В МДП – транзисторах затвор и канал изолированы пленкой диэлектрика (рис. 1.4). Каналом является тонкий слой на поверхности пластины (подложки) с противоположным типом проводимости. Затвор представляет собой тонкую пленку алюминия, нанесенную на поверхность окисла кремния. Исток и сток выполнены в виде сильнолегированных n+ – областей (концентрация дырок 1018 -1020 см-3) в пластине кремния n- типа.

Если Uзи=0 напряжение на затворе отсутствует, то сопротивление между истоком и стоком, определяемое двумя включенными встречно p-n переходами в местах контакта p-подложки и n+-областей, очень велико. Возникновение канала основано на так называемом эффекте поля, т.е. изменении концентрации носителей в приповерхностном слое полупроводник под действием электрического поля.

При подаче на затвор положительного Uзи>0, по отношению к истоку напряжения в подложке полупроводника возникает электрическое поле, которое вытягивает из р- подложки электроны, увеличивая их концентрацию в тонком приповерхностном слое и изменяет тип его проводимости на противоположный. Этот тонкий слой полупроводника с инверсной проводимостью (n – типа) называется индуцированным или наведенным слоем. Он образует проводящий канал, соединяющий n+ - области истока и стока. При увеличении отрицательного напряжения затвора толщина n - слоя и его проводимость возрастают.

рис. 1.5. Рис. 1.6

Таким образом, можно управлять током стока транзистора. Напряжение затвора, при котором в приборе формируется канал, называется пороговым напряжением Uзи пор. Если при |Uзи|>|Uзи пор| подать положительное напряжение на сток, то в канале появится продольное электрическое поле и возникнет дрейфовое движение электронов от истока к стоку. При изменении напряжения Uси, будет меняться дрейфовая скорость движения дырок в канале, а следовательно, и ток Ic. Величина порогового напряжения у транзисторов с индуцированным каналом лежит в пределах от 1 до 6 В..

Величина тока в цепи затвора транзистора очень мала, так как сопротивление изоляции между затвором и каналом достигает 1015 Ом. Выходные характеристики МДП транзистора с индуцированным каналом (рис. 1.5) имеют такой же вид, как и характеристики полевого транзистора с p-n -переходом, а его входная ВАХ на рис. 1.6.

Принцип работы, свойства и ВАХ МДП- транзистора с p - каналом примерно такие же как и транзистора с n –каналом. Отличие состоит в том, что транзисторы с n - каналом оказываются более быстродействующими, так как подвижность электронов, переносящих ток, примерно в три раза выше, чем подвижность дырок. Кроме того, эти транзисторы имеют разные пороговые напряжения.

 


Вопрос 38

4.3.2. МДП- транзистор со встроенным каналом. В таких МДП транзисторах канал на этапе изготовления образуется тонким слоем полупроводника, нанесенного на подложку и имеющего противоположный по отношению к ней тип проводимости. Эти транзисторы отличаются от транзисторов с индуцированным каналом тем, что могут работать как при положительном, так и при отрицательном напряжении на затворе. Конструкция МДП транзистора со встроенным n-каналом приведена на рис.

Если напряжение на затворе относительно подложки, которая обычно соединена с истоком, равно нулю Uзи=0, то при подаче на сток положительного напряжения в цепи сток исток будет протекать ток стока Iс определяемый проводимостью канала, причем ВАХ будет аналогична выходной вах полевого транзистора с управляющим p-n переходом.

Если на затвор, подать отрицательное напряжение Uзи<0, то электрическое поле, создаваемое этим напряжением, удаляет электроны канала в глубь подложки, увеличивая его сопротивление, ток стока при этом уменьшается. Такой Рис.1.8. Рис.1.9.

режим называется режимом обеднения.

Если на затвор, подать положительное напряжение Uзи>0, то электрическое поле, создаваемое этим напряжением, втягивает электроны из подложки в канал, обогащая его носителями, и уменьшая его сопротивление, ток стока при этом увеличивается. Такой режим называется режимом обогащения.

Выходные характеристики Ic=f(Uси) при Uзи=const и характеристики прямой передачи Ic=f(Uзи) при Uси=const для МДП – транзистора со встроенным каналом показаны на рис. 1.8. и 1.9. соответственно.

Полевые транзисторы с индуцированным каналом получили более широкое распространение, чем транзисторы со встроенным каналом. В первую очередь это связано с тем, что управляющее напряжение и напряжение питания одной полярности (одного знака).

 

Вопрос 39

Подобно биполярным транзисторам, полевые транзисторы используют в трех основных схемах включения: с общим истоком (ОИ), общим стоком (ОС) и общим затвором (ОЗ). Усилительный каскад по схеме ОИ аналогичен схеме ОЭ. Он дает большое усиление тока и мощности и инвертирует фазу входного напряжения. Коэффициент усиления каскада по напряжению приближенно равен Ku= SRH.

Схема ОС подобна эмиттерному повторителю и называется истоковым повторителем. Коэффициент усиления каскада по напряжению близок к единице. Усилитель по схеме ОС имеет сравнительно небольшое выходное сопротивление и большое входное сопротивление. Кроме того, здесь значительно уменьшена входная емкость, что способствует увеличению входного сопротивления на высоких частотах.

Схема ОЗ аналогична схеме ОБ. Схема не усиливает тока, поэтому коэффициент усиления по мощности во много раз меньше, чем в схеме ОИ. Эта схема имеет малое входное сопротивление, так как входным током является ток стока. Фаза напряжения при усилении не инвертируется.

Вопрос 40

1.5. Формальная схема замещения полевого транзистора и ее дифференциальные параметры

Полевой транзистор, как и биполярный, можно представить в виде активного четырехполюсника и при работе с сигналами малых амплитуд характеризовать формальной схемой замещения и ее дифференциальными параметрами. На практике в качестве дифференциальных параметров используют у-параметры, в общем случае это комплексные функции частоты, а в частности на низкой частоте, это вещественные величины. К ним относятся:

1) крутизна стокозатворной ВАХ полевого транзистора

; 1.7.

2) входная проводимость полевого транзистора

,

на низких частотах близка к нулю;

3) выходная проводимость

1.8.

Часто при расчетах схем на полевых транзисторах используют выходное сопротивление Ri = 1/Y22, которое для области насыщения у маломощных транзисторов равно 10 - 100 кОм. Кроме того, полевой транзистор можно характеризовать статическим коэффициентом усиления

1.9.

Здесь знак минус означает, что для сохранения неизменной величины тока стока при определении знаки приращений напряжений Ucи и Uзи должны быть разными.

 

Вопрос 41

1.6. Физическая эквивалентная схема полевого транзистора

Для описания частотных свойств полевого транзистора в широком диапазоне частот применяется физическая эквивалентная схема (рис. 1.10).

Усилительные свойства транзистора, имеющего крутизну S, отражаются идеальным генератором тока SUmзи. Ri = 1/Y22 - выходное сопротивление полевого транзистора. rс rк, rи – это обьемные сопротивления области стока, канала и истока. В эквивалентной схеме учтены также емкости. В транзисторе с управляющим р-n-переходом емкость Сси в основном определяется емкостью между электродами стока и истока, а в МДП- транзисторе емкость Сси определяется еще и емкостью р-n- перехода между подложкой и областями истока и стока. Поэтому в МДП- транзисторах

Рис. 1.10

емкость Сси существенно выше, чем в транзисторах с р-n- переходом. Поскольку полевой транзистор работает с обратно смещенным р-n- переходом, то емкости Сзи и Сзс являются барьерными. Для МДП- транзистора — это емкости затвора относительно областей истока и стока. Ориентировочно, для маломощных транзисторов различного типа Сзи=2-15 пФ, Сзс=0,3-10 пФ; для МДП – транзисторов Сси=315 пФ; для транзисторов с управляющим р-n

– переходом емкость Сси, как правило, не превышает 1 пФ.

Рассмотренная схема справедлива до частоты, равной примерно 0,7fг. Частота fг на которой коэффициент усиления по мощности в режиме согласования по входу и выходу равен единице, называется предельной частотой генерации транзистора. Предельная частота генерации полевого транзистора определяется как:

здесь rИ — сопротивление неуправляемого участка канала вблизи области истока, зависящее от тока насыщения и, как правило, не превышающее нескольких десятков ом.

Используя схему рис. 5.10, можно найти у - параметры полевого транзистора:

5.10

3нак минус в формуле для означает, что ток во входной цепи, вызванный напряжением Uси, вследствие обратной связи в транзисторе, имеет направление, противоположное тому, которое принято положительным для тока затвора. Из (5.10) следует, что с ростом рабочей частоты транзистора величины всех проводимостей растут. Поскольку емкость Сзс невелика, ее влиянием даже на достаточно высоких частотах можно пренебречь и считать, что .

Вопрос 42

Маркировка транзисторов

К Т 3 1 5 А, Г Т 7 0 1 А, К П 3 0 3 Е

1 2 3 4 5 6

Аналогично диодам.

1 – характеризует материал. Г,1 –Ge; К,2 –Si;

2 – функциональное назначение.

Т – транзистор(биполярный);

П – полевой;

3 – цифра связанная с мощьностью рассеивания и его частотными свойствами.

4,5 – Порядковый номер разработки(Ни с чем не связан).

6 – Буква характеризующая деление по параметрическим группам.

 

Вопрос 43

Тиристоры

Тиристоры это полупроводниковые приборы с тремя и более р-п-переходами. Они предназначены, для использования в качестве электронных ключей в схемах коммутации больших по величине токов при сравнительно невысоком быстродействие.

В зависимости от вида ВАХ и способа управления тиристоры делят на диодные и триодные.

Диодные тиристоры имеют два выводы – анод и катод. В зависимости от способа управления включения или выключения тока, они бывают: запираемые в обратном направлении (1), проводящие в обратном направлении (2) и симметричные (3). Последние представляют собой встречно- последовательное соединение тиристоров запираемых в обратном направлении. Они способны пропускать ток как в прямом, а также в обратном направлении. Они имеют два вывода, которые называются: анод 1, и анод 2.

Триодные тиристоры называют просто – тиристорами. Они имеют три вывода. Появляется третий управляющий электрод (УЭ). Напряжение, подаваемое на него, позволяет управлять включением (выключением) тиристора. Триодные тиристоры подразделяют на: запираемые в обратном направлении с управлением по аноду (4) и по катоду (5); проводящие в обратном направлении с управлением по аноду (6) и по катоду (7); симметричные (двунаправленные).

Структура тиристора, ВАХ и принцип работы

Простейший диодный тиристор имеет четырехслойную р-п-р-п-структуру (рис.А б), изготовленную из кремния.

Область р1, на которую подают положительное напряжение от источника напряжения Еа называется – анодом, область п2 – катодом, а области п1 и р2 – базами. Между р и п областями возникают р-п-переходы П1, П2, П3. Переходы П1 и П3 называются эмиттерными, переход П2 – коллекторным т.к. он смещен в обратном направлении. Аналогом тиристора может служить схема (рис. А а) из двух биполярных транзисторов VT1 – р-п-р-типа и VT2 - п-р-п-типа.

Вольт-амперная характеристика динистора приведен на рис. Ав. На ней можно выделить четыре участка.

Участок – 1. На аноде положительное напряжение. Переходы П1 и П3 смещены в прямом направлении, а переход П2 – в обратном.

Все внешнее напряжение будет приложено к КП. Ток коллекторного перехода Iкп – это малый по величине ток неосновных носителей заряда. Он является суммой токов, вызванных инжекцией через эмиттерные переходы П1 и П3, и небольшого собственной обратного тока перехода П2:

Iкп=a1Iэ1+ a2Iэ2 +Iко,

где a1 и a2 – коэффициенты инжекции тока эмиттерных переходов П1 и П3. Очевидно, что Iкп=Iэ1=Iэ2= Iа т.к. это элементы одной злектрической ветви, а потому

Iа=I/ко (1-(a1+ a2))

Пока напряжение между анодом и катодом относительно мало a1 + a2<<1, Iкп= Iк0, сопротивление прибора велико (до сотен килоом). Таккак коэффициенты передачи тока эмиттерных переходов П1 и П3 (a1 и a2) с увеличением Uак растут. Следовательно, растет и ток Iа.

Участок 2. При определенном значении напряжения Uак, называемом напряжением включения Uвкл, a1 + a2 =1. Ток в соответствии с (6.4) должен •стремиться к бесконечности. Начинается лавинообразное увеличение токов. Транзисторы переходят в режим полного насыщения. Сопротивление прибора при этом падает до единиц ом. Но наличие в цепи анода резистора с сопротивлением Rа- ограничивает ток на уровни Еа/ Rа..

Участок 3, соответствует ВАХ диода в отрытом состоянии. Это проводящее состояние динистора. Iа@Еа /R.

Участок 4. Переходы П1 и П3 смещены в обратном направлении. Ток динистора мал. Это запертое т.е. непроводящее ток, состояние динистора. При достаточно больших обратных напряжениях, обратный ток динистора резко возрастает – это тепловой пробой. В основном за процесс включения динистора отвечает переход П3 и процессы в области р2. Обычно выполняется условие a2>a1. Это достигается конструкцией – Wn1>Wp2, где Wn1>Wp2 – толщина базы n1 и p2.

Тирстор имеет дополнительный – управляющий электрод. Если, используя управляющий электрод, с помощью внешнего источника напряжения или тока в

цепи эмиттерного перехода П3

обеспечить протекание тока, то это вызовет увеличение a2 и сумма a1 + a2 приблизится к единице при меньшем напряжении Uак, чем при отсутствии тока в цепи управляющего электрода. Следовательно, изменяя ток управляющего электрода, Iуэ можноа изменять Uвкл. После открывания тиристора ток Iуэ может быть уменьшен до нуля, но прибор останется во включенном состоянии. Чтобы выключить прибор, надо прервать или значительно уменьшить на определенное время проходящий через, него ток – условие выключения тиристора Iа <Iуд.

В последнее время начат выпуск ЭПс пятислоиной структурой (семисторов).Их ВАХ одинакова в 1-м и 3-м квадрантах, а управление включением обеспечивается с помощью одного (общего) электрода.

Параметры тиристоров. Тиристоры принято характеризовать напряжением и токомвключения; максимально допустимым обратным напряжением, максимально допустимым током в открытом состоянии, падением напряжения на приборе при максимально допустимом прямом токе; током выключения или его называют током удержания (током, ниже которого прибор переходит в закрытое состояние), минимальной длительностью включающего импульса: Все эти параметры и ряд дополнительных данных об условиях эксплуатация тиристоров приводится в соответствующих справочниках.

 

Вопрос 44

Общая характеристика электронных устройств

и интегральных микросхем (ИМС)

Радиоэлектронная аппаратура (РЭА) построена из отдельных блоков и функциональных узлов, реализованных на основе некоторой элементной базы, то есть компонентов и элементов.

Компоненты - это конструктивно законченные самостоятельные изделия. К ним относятся дискретные радиоэлементы и интегральные микросхемы (ИМС).

Элементы могут быть активными (диоды, транзисторы биполярные, транзисторы полевые) и пассивными (резисторы, конденсаторы и др.). И те, и другие могут быть дискретными (тогда это компоненты) или интегральными. Интегральные элементы являются неотделимыми частями микросхемы и не существуют как отдельные изделия.

Применение электронных устройств для решение все более сложных задач приводит к постоянному усложнению их электрических схем. Анализ развития электронной техники показывает, что примерно в течение 5..7 лет сложность электронных устройств повышается в 10 раз.

Такой рост сложности электронных устройств на дискретных элементах, приводит к ряду проблем:

1. снижение надежности устройства за счет большого числа элементов и электрических соединений между ними,

2. большие габариты и вес,

3. возрастание потребляемой мощности,

4. слабые возможности автоматизации производства РЭА,

5. трудность получения одинаковых параметров электронных приборов.

Стремление избавиться от этих недостатков привело к появлению и развитию микроэлектроники.

Микроэлектроника — это область электроники, которая занимается разработкой и применением интегральных микросхем (ИМС) и аппаратуры на основе ИМС.

ИМС — это микроэлектронное, конструктивно законченное, изделие, выполняющее определенную функцию (усиление, генерацию, логическую операцию и др.) преобразования и обработки сигналов и имеющее высокую плотностью упаковки электрически соединенных элементов и кристаллов в единице объема.

При изготовлении ИМС используется групповой метод производства, при котором на одной подложке одновременно изготавливается множество однотипных элементов или целых микросхем, что позволяет получить изделия с одинаковыми параметрами.

Классификация и основные характеристики ИМС

Степень интеграции (плотность упаковки) является показателем сложности ИМ.

Степень интеграции - это число простых элементов и компонентов входящих в состав ИМС. Количественно степень интеграции характеризуется числом K = lg N, где K – это степень интеграции, N – это число простых элементов в ИМС.

По степени интеграции ИМС делятся на интегральные схемы:

1-ой степени: К=1 N<=10 т.е. с числом элементов меньше 10;

2-ой степени: К=2 N<=100;

3-ой степени: К=3 N<=103 – их называют большие ИС т.е. БИС;

4-ой степени: К=4 N<=104 - их называют большие ИС т.е. БИС;

5-ой степени: К=>5 N<=105 - их называют сверхбольшие ИС т.е. СБИС.

Сложность ИС характеризуется также плотностью упаковки, т.е числом элементов в единице обьема или на единице площади кристалла.

По функциональному назначению ИМС делятся на аналоговые и цифровые.

Аналоговые ИС (АИС) это микросхемы, которые предназначены для преобразования и обработки сигнала представленных в аналоговом виде. Это сигналы, которые описываются непрерывными функциями времени. В основе аналоговых схем лежит простейший усилительный каскад на основе которого строят другие устройства. В настоящее время под аналоговыми принято называть следующие операции: усиления, сравнения, ограничение, перемножение, частотная фильтрация.

Цифровые ИС (ЦИС) это микросхемы, которые предназначены для преобразования и обработки сигналов, представленных в двоичном или другом цифровом коде. В основе цифровых схем лежит ключ и переключатель тока.

Как правило, ИС разрабатываются и выпускаются изготовителями сериями.

По технологии изготовления: полупроводниковые, гибридные (плёночные), а также совмещённые.

Вопрос 45

Полупроводниковые ИМС (ПИМС). В них все элементы и межэлементные соединения выполнены в объёме и на поверхности кристалла проводника, т.е. полупроводниковые ИМС представляют собой кристалл полупроводника отдельные области которого выполняют функции транзистора, конденсатора, резистора и диода. Катушки индуктивности и конденсаторы с большой ёмкостью стараются не применять, поскольку они не выполнимы по интегральной технологии.

Транзисторы представляют собой трёхслойную структуру с двумя p-n-переходами обычно применяют n-р-n реже р-n- р транзисторы. Для изоляции транзисторов друг от друга используют два метода: изоляция диэлектриком, и изоляция p-n-переходом.

Диоды в ИМС – это двухслойная структура с одним p-n-переходом, обычно, в качестве диода используют транзистор в диодном включении.

Конденсаторы в ИМС – получают на основе p-n-перехода транзистора смещённого в обратном направлении. Максимально допустимая ёмкость конденсатора, применяемая в ИМС не должна превышать 200 пФ.

Резисторы в ИМС – это участки легированного полупроводника с двумя выводами. Сопротивление диффузионных резисторов зависит от удельного сопротивления полупроводника и геометрических размеров и обычно не превышает единиц килоом. В качестве высокоомных резисторов используют входные сопротивления эмиттерных повторителей, сопротивления которых может достигать сотен килоом.

Поскольку все элементы ИС получают в едином технологическом цикле в кристалле полупроводника, то количество операций на их изготовление не намного превышает количество операций по изготовлению отдельного транзистора. Поэтому стоимость ИС не намного превышает стоимость одного транзистора. Это вносит особенности в схемотехнику ИС – в ИС предпочтительно использовать транзисторы одного вида т.к. это упрощает технологию изготовлния ИС.В зависимости от транзисторов, которые используются в ИС различают целый ряд технологий изготовления ИС: биполярная n-p-n технология, биполярная p-n-р технология, совмещенная биполярная технология, и т.д.

Гибридная ИМС (ГИМС). В гибридной ИМС пассивные элементы выполняют по пленочной технологии, т.е. путем нанесения различных пленок на поверхность диэлектрической подложки из стекла или керамики, а активные элементы – это бескорпусные транзисторы. В зависимости от толщины пленок различают тонкопленочные (<1мкм) и толстопленочные (>1мкм) ГИМС. Помимо количественных различий у них существует и различие по технологии нанесения пленок. Тонкопленочные элементы формируют как правило путем термического вакуумного испарения и ионного распыления, а толстопленочные элементы наносят на подложку методом трафаретной печати с последующим вжиганием. Подложка с расположенными на ней элементами, проводниками и контактными площадками называется платой. Плату помещают в жесткий металлический или пластмассовый корпус, который предназначен для механической прочности и герметизации.

Производство полупроводниковых схем (ПИМС) отличаются большими затратами и сложностью оборудования, и окупается лишь при массовом производстве ИМС. Производство ГИМС отличается малыми затратами на производство и применяется при малосерийном производстве, но плотность упаковки у них значительно ниже.

По виду активных элементов различают ИС:

на биполярных транзисторах;

на полевых МДП-транзисторах (металл диэлектрик проводник);

на КМДП-транзисторы (комплиментарных полевых транзисторах со структурой металл-диэлектрик-проводник) – комплиментарные - это транзисторы с одинаковыми параметрами, но имеющие разный тип проводимости канала.

Вопрос 46

Маркировка ИМС

Промышленность выпускает ИМС сериями. Серия объединяет ряд отдельных схем единых по технологическому признаку, согласованных по напряжения питания, уровням входных и выходных сигналов и конструктивному оформлению. Серии ИМС стремятся разрабатывать так, чтобы из входящих в них схем можно было построить законченное устройство.

Маркировка ИМС по ГОСТ состоит из 4 элементов.

ПРИМЕР: 140 УД 8 А или К 155 ЛА 3

Первые три или четыре цифры - номер серии. Он характеризует конструктивно-технологическое деление и состоит из двух частей:

первая цифра дает деление по технологии изготовления: 1, 5, 7 – это полупроводниковые ИМС (7 – это бескорпусные ИС); 2, 4, 6, 8 – это ГИМС; 3 – прочие (пленочные) ИМС.

Две или три следующие цифры означают порядковый номер разработки ИМС (от 0 до 999).

две буквы – это функциональное назначение ИМС. Например, УД – операционный усилитель; ПС – аналоговый перемножитель; ЛА – логический элемент «И-НЕ»; ЛЕ – логический элемент «ИЛИ-НЕ»; ЕН – линейный стабилизатор напряжения; ЕП – Импульсный стабилизатор напряжения.

Третий элемент - две цифры. Это порядковый номер разработки в данной серии.

Четвертый элемент и буква. Она характеризует деление по параметрическим группам.

Иногда перед условным обозначением стоит буква «К», это значит микросхема широкого применения, если буквы нет, то это ИС специального назначения.

Иногда перед условным обозначением стоят две буквы – они указывают тип корпуса. Например:

КМ – тип корпуса

КР – пластмассовый корпус

КМ – керамо-металлический

КЕ – металло-полимерный

 

Вопрос 47

Усилители электрических сигналов

Существует ряд технических задач, когда слабомощный источник сигнала оказывается неспособным управлять исполнительным устройством (нагрузкой). Для решения этих задач используют усилители электрических сигналов. Их размещают между источником сигнала и нагрузкой и они увеличивают входной сигнал в К>1-раз (рис..)

Под усилителем понимают устройство, в котором сравнительно маломощный входной сигнал управляет передачей гораздо большей мощности от источника питания (ИП) в нагрузку (Rн). Обобщенная схема включения усилителя приведена на рис.. Слева вход усилителя (выводы 1-11), а справа выход (2-21), к нему подключена нагрузка



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2016-08-20 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: