Дискретная математика всегда оставалась наиболее динамичной областью знаний. Сегодня наиболее значимой областью применения методов дискретной математики является область компьютерных технологий. Это объясняется необходимость создания и эксплуатации электронных вычислительных машин, средств передачи и обработки информации, автоматизированных систем управления и проектирования. На грани дискретной математики и программирования появляются новые дисциплины, такие как разработка и анализ вычислительных алгоритмов, не численное программирование, комбинаторные алгоритмы, алгоритмизация процессов. Дискретная математика и примыкающие к ней дисциплины изучаются во всех университетах и институтах, где осуществляется подготовка специалистов в области программирования, математики, а также по экономическим, техническим и гуманитарным направлениям.
Совершенствование высшего образования в настоящее время связывают с внедрением в учебный процесс новых информационных технологий. Такой подход основывается на высоких требованиях к уровню информационно-образовательной подготовки специалиста. Внедрение современных информационных технологий дает возможность повысить качество обучения, обеспечить уровень мотивации студентов, эффективнее организовать самостоятельную работу, использовать индивидуальный подход в обучении.
Компьютерное обучение, прошедшее в своем развитии несколько этапов, сегодня является неотъемлемой частью учебного процесса высшей школы.
Углубление разрыва между уровнем математической подготовки выпускников школы и потребностями вузов определяется многими причинами, среди которых мы выделим следующие:
|
- недостаточность и неоднородность математической подготовки абитуриентов;
- взаимная несогласованность школьной и вузовской программ по математике;
- недостаточная квалификация учителей и отсутствие удобной и доступной им системы повышения квалификации и переподготовки, в частности, в дистанционной форме;
- нежелание математических кафедр при составлении планов занятий учитывать уровень подготовки абитуриентов и устранять существующий разрыв;
- определенный “шантаж” вузов, выражающийся в том, что на вступительных экзаменах предлагаются искусственно усложненные задачи, а не те, которые действительно необходимы для успешного продолжения образования в вузе;
- увеличение количества студентов в связи с потребностью общества в массовом высшем образовании.
Предложим теперь некоторые организационно-методические мероприятия, направленные на совершенствование как школьного, так и вузовского математического образования.
- Школьный курс математики должен создавать у учащегося максимально полное и цельное восприятие математической науки (от Евклида и Архимеда до наших дней).
- Целесообразно отказаться от утомительных технических подробностей, устаревших или второстепенных сведений. Напротив, представления о дискретной математике (комбинаторика, элементы теории вероятностей), об истории математической мысли, увлекательной и полной драматизма, как история любой сферы человеческой деятельности, хотя бы краткий обзор применения математики в различных областях современной науки и технологии, на наш взгляд, должны быть включены в программы школьного курса математики.
- Необходимо вернуть в школу хотя бы начальный курс логики, текстовые задачи и, вообще все то, что способствует умению логического мыслить, понимать суть поставленной задачи, сосредоточиться на главном и отбросить второстепенное, развивает способность понять мысль другого и правильно сформулировать свою.
- Программа по математике для 1-го курса вузов должна быть скорректирована таким образом, чтобы студенты ощущали непрерывность математического образования: то, что они уже изучали в школе (особенно это касается элементов математического анализа и векторной алгебры) не повторяется (если забыл, обратись к учебнику), а если и повторяется, то на качественно новом уровне, с иной степенью глубины и новыми целями, причем у учащегося не должно создаваться ощущения, что ему говорится: “мы знаем, что вы это уже изучали, но будем учить вас “с нуля”, так, как будто этого не было вообще”.
|
В этой статье мы анализируем некоторые тенденции в развитии математического образования, которые наблюдаются на протяжении нескольких десятков лет. Мы имеем в виду сокращение количества часов, выделяемых на математику; углубление разрыва между уровнем математических знаний выпускников школы и требованиями вузов; углубление разрыва между уровнем математических знаний выпускников вузов и объективными потребностями современной науки и технологии; ухудшение материального положения преподавателей и финансирования образования.
Активная часть научно-педагогического сообщества, раньше других осознав пагубное воздействие этих тенденций на уровень фундаментального образования, культурного и нравственного состояния общества, старается противостоять им. В частности, в 1990-93 годах Научно-методический совет по математике совместно с другими Научно-методическими советами использовали свое влияние и добились того, что базовая подготовка по циклу общих математических и естественно-научных дисциплин заняла надлежащее место в учебных планах вузов. Принятые в то время Закон РФ “Об образовании”, учебные планы и государственные образовательные стандарты открывали широкие перспективы для перехода отечественной системы образования на качественно новый уровень. Одной из характерных черт этого уровня является глубокая и всесторонняя подготовка студентов в области математики и фундаментальных естественных наук, позволяющая им в будущем создавать и внедрять технологии, сама основа которых может быть неизвестна во время обучения.
|
В те годы казалось, что вышеупомянутые негативные тенденции преодолены, но, видимо, импульс начала 90-х годов не только не был надлежащим образом осознан, поддержан и подкреплен практическими делами, а напротив, натолкнулся на сопротивление, и негативные тенденции вновь возобладали с возросшей силой. В частности, планирование базовой подготовки в области фундаментальных наук опять перешло в ведение УМО, и в новых учебных планах уровень такой подготовки предусмотрен существенно ниже, чем в прежних.
Столь долговременный и устойчивый характер негативных тенденций в отечественном образовании, показывают, что они - Вызов в том смысле, в каком этот термин употреблял Тойнби [1]. Следовательно, чтобы переломить эти тенденции и сделать прогрессивные перемены необратимыми, жизненно необходимо найти надлежащий Ответ.
Авторы этой статьи - люди разных поколений, разного жизненного и педагогического опыта - объединились, чтобы перевести свое недовольство существующим положением и тревогу о будущем в конструктивные предложения. С этой целью мы намерены проанализировать негативные тенденции таким образом, чтобы выявить уродливо проявляющиеся в них глубинные импульсы, которые в силу своей фундаментальной природы, должны стать движущей силой кардинального улучшения математического образования. Мы также наметим действия, которые могли бы стать достойным Ответом на Вызов.
В первом разделе этой статьи мы выясняем причины, по которым количество часов, выделяемых на математику, уменьшается. Мы обсуждаем некоторые “рекомендации”, которыми сопровождается такое уменьшение, и демонстрируем их неадекватность реальной ситуации. Взамен мы предлагаем некоторые пути реорганизации учебного процесса, изменения учебных программ и методики преподавания.
Во втором разделе мы выясняем причины углубления разрыва между уровнем математических знаний выпускников школ и теми требованиями, которые к ним предъявляют вузы, и предлагаем комплекс организационно-методических мероприятий, направленных на совершенствование как школьного, так и вузовского математического образования.
В третьем разделе мы выясняем причины углубления разрыва между уровнем математических знаний выпускников вузов и потребностями современной науки и технологии и предлагаем изменения в содержании курса математики, методике и техническом обеспечении преподавания, а также в политике математических кафедр.
В четвертом разделе мы анализируем причины, по которым общество не желает платить за образование своих граждан, и предлагаем несколько видов деятельности, позволяющих привлечь в образование необходимые средства и одновременно способствующих повышению его уровня.
В заключении мы резюмируем наши предложения и описываем некоторые черты, которые, на наш взгляд, должно приобрести математическое образование, если предложенные нами меры будут реализованы.