Виды защиты электродвигателей




Для того чтобы защитить электродвигатель от повреждений при нарушении нормальных условий работы, а также своевременно отключить неисправный двигатель от сети, предотвратив или ограничив тем самым развитие аварии, предусматриваются средства защиты.

В зависимости от характера возможных повреждений и ненормальных режимов работы различают несколько основных наиболее распространенных видов электрической защиты асинхронных двигателей. Защита от коротких замыканий отключает двигатель при появлении в его силовой (главной) цепи или в цепи управления токов короткого замыкания. Аппараты, осуществляющие защиту от коротких замыканий (плавкие предохранители, электромагнитные реле, автоматические выключатели с электромагнитным расцепителем), действуют практически мгновенно, т. е. без выдержки времени.

Защита от перегрузки предохраняет двигатель от недопустимого перегрева, в частности и при сравнительно небольших по величине, но продолжительных тепловых перегрузках. Защита от перегрузки должна применяться только для электродвигателей тех рабочих механизмов, у которых возможны ненормальные увеличения нагрузки при нарушениях рабочего процесса. Аппараты защиты от перегрузки (температурные и тепловые реле, электромагнитные реле, автоматические выключатели с тепловым расцепителем или с часовым механизмом) при возникновении перегрузки отключают двигатель с определенной выдержкой времени, тем большей, чем меньше перегрузка, а в ряде случаев, при значительных перегрузках, — и мгновенно.

Защита от понижения или исчезновения напряжения (нулевая защита) выполняется с помощью одного или нескольких электромагнитных аппаратов, действует на отключение двигателя при перерыве питания или снижении напряжения сети ниже установленного значения и предохраняет двигатель от самопроизвольного включения после ликвидации перерыва питания или восстановления нормального напряжения сети.

Специальная защита асинхронных электродвигателей от работы на двух фазах предохраняет двигатель от перегрева, а также от «опрокидывания», т. е. остановки под током вследствие снижения момента, развиваемого двигателем, при обрыве в одной из фаз главной цепи. Защита действует на отключение двигателя. В качестве аппаратов защиты применяются как тепловые, так и электромагнитные реле. В последнем случае защита может не иметь выдержки времени.

Аппараты электрической защиты могут осуществлять один или сразу несколько видов защит. Так, некоторые автоматические выключатели обеспечивают защиту от коротких замыканий и от перегрузки. Одни из аппаратов защиты, например плавкие предохранители, являются аппаратами однократного действия и требуют замены или перезарядки после каждого срабатывания, другие, такие как электромагнитные и тепловые реле, — аппараты многократного действия. Последние различаются по способу возврата в состояние готовности на аппараты с самовозвратом и с ручным возвратом.

Выбор и описание схемы

Рис. 3.3.1. Схема работы электропривода

 

Работой электропривода управляют с помощью контроллера. При повороте пакетного выключателя S1 получает питание катушка линейного контактора KM, контактор замыкает главные контакты KM1 в цепи статора двигателя и вспомогательный контакт KM2, шунтирующий контакт K1 контроллера. Загорается сигнальная лампа H1. Схема подготовлена к пуску.

При повороте рукоятки (маховика) контроллера в положение 1, например «Выбирать», размыкается контакт K1 и замыкаются контакты K2, K5, K6, K7 и K8 контроллера. Двигатель подключается к сети, начинает вращаться и выбирать якорь с малой скоростью. При переводе рукоятки (маховика) контроллера в положение 2 контакты K2 и K5 останутся замкнутыми, разомкнутся контакты K6, K7 и K8 и замкнутся K9, K10 и K11 контроллера. Произойдет переключение фаз обмотки статора со схемы малой частоты вращения на схему большой частоты вращения.

Чтобы изменить направление вращения двигателя, рукоятку контроллера поворачивают в обратном направлении в положение 1 «Травить». В этом положении вместо контактов K2 и K5 замкнутся контакты K3 и K4. Произойдет переключение фаз, и направление вращения двигателя изменится.

Скорости (число пар полюсов) переключаются в том же порядке: в положении 1 рукоятки контроллера замкнуты контакты K6, K7 и K8 и фазы обмоток статора включены по схеме малой частоты вращения; в положении 2 рукоятки контроллера замкнуты контакты K9, K10 и K11 и фазы обмотки статора включены по схеме большой частоты вращения.

В схеме предусмотрена защита двигателя от перегрузки с помощью тепловых реле F3-F6.

При необходимости работы электропривода в условиях перегрузки контакты тепловых реле шунтируются нажатием кнопки S2. Нулевая защита осуществляется линейным контактором KM, защита от токов короткого замыкания – автоматическим выключателем QF1. Предохранители F1, F2 защищают цепь управления от токов короткого замыкания.

Схема предусматривает:

· пуск, реверсирование и остановку двигателя

· работу на малой и большой скорости (в положениях «Травить» и «Выбирать»)

· торможение – с помощью дискового электромагнитного тормоза KY

 

 

ЗАКЛЮЧЕНИЕ

В курсовом проекте был произведен расчет электропривода якорно-швартового устройства судна. Были выбраны якоря, рассчитаны тяговые усилия и моменты на валу электродвигателя. Был выбран электродвигатель МАП421-4/8ОМ1 и произведена его проверка на продолжительность съема судна с якоря, на нагрев и максимальную скорость при отдаче якоря. Так же выбрана схема управления электроприводом якорно-швартового устройства судна. В ходе расчета все показатели получены в пределах указанных в регистре РФ. Конечная проверка двигателя на нагрев показала, что электропривод идеально подходит для данного якорно-швартового устройства.

Цель курсового проекта достигнута.

 

 

СПИСОК ЛИТЕРАТУРЫ

1. Чекунов К.А. «Судовые электроприводы и электродвижение судов» -М., 1986. – 352 с.

2. Копылов И.П. «Электрические машины» -М., 2002. – 608 с.

3. Качман М. М. «Электрические машины и электропривод автоматических устройтсв» -М., - 157 с.

4. Ягодкин В.Я.. Электроприводы судовых грузоподъемных механизмов. СПб: ГМА им. Макарова, 2004

5. Фираго Б.И., Павлячик Л.Б.. Регулируемые электроприводы переменного тока. М.: Техноперспектива, 2006

6. Белов М.П., Новиков В.А., Рассудов Л.Н.. Автоматизированный электропривод типовых производственных механизмов и технологических комплексов. М.: Академия, 2007

7. Москаленко В.В.. Системы автоматизированного управления электропривода. Издательство: Инфра-М, 2007

8. Белов М.П., Зементов О.И., Козярук А.Е.. Инжиниринг электроприводов и систем автоматизации. М.: Академия, 2006

9. Гульков Г.И., Петренко Ю.Н., Раткевич Е.П.. Системы автоматизированного управления электроприводами. Новое знание (Минск), 2007

10. Регистр России. Правила классификации и постройки морских судов Л., «Транспорт», 1990 г.

11. Судовые электроприводы. Справочник в 2 тт. под ред. Богословского А.П. Л., «Судостроение», 1983 г.



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2019-04-28 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: