А) Кристаллическая структура эффекта




План

Введение

1. Описание пьезоэлектрического эффекта

а) Кристаллическая структура эффекта

б) Модельное рассмотрение

2. Деформации кристаллов

3. Обратный пьезоэлектрический эффект

4. Физический механизм обратного пьезоэлектрического эффекта

5. Свойства пьезоэлектрических кристаллов

6. Применение эффекта

Заключение

Литература


Введение

 

Тема моей курсовой работы «Пьезоэлектричество». Я выбрал эту тему, потому что пьезоэлектричество представляет собой интересное явление. До сих пор мы рассматривали поляризацию диэлектриков, вызванную внешним электрическим полем. В некоторых кристаллах поляризация может возникнуть и без внешнего поля, если кристалл подвергается механическим деформациям. Это явление, открыто в 1880 г. Пьером и Жаком Кюри, получило название «пьезоэлектрического эффекта». В наше время пьезоэлектричество нашло свое применение в различных видах деятельности человека. Я попытался побольше узнать о природе этого явления и его применении. Еще одной причиной послужившей выбору именно этой темы, стало то, что данный эффект применяется во многих приборах таких как микрофоны, телефоны, гидрофоны.

Для изучения данной темы я использовал следующую литературу: С.Г. Калашников «Электричество», Д.В. Сивухин «Общий курс физики: Электричество Том 3»,

 


Описание пьезоэлектрического эффекта

Во многих кристаллах при растяжении и сжатии в определенных направлениях возникает электрическая поляризация. В результате этого на их поверхностях появляются электрические заряды обоих знаков. Это явление, получившее название прямого пьезоэлектрического эффекта. Оно наблюдалось затем на кристаллах турмалина, цинковой обманки, хлората натрия, винной кислоты, тростникового сахара, сегнетовой соли, титаната бария и многих других веществ. Пьезоэлектрическими свойствами могут обладать только ионные кристаллы. Если кристаллические решетки положительных и отрицательных ионов, из которых построены такие кристаллы, под действием внешних сил деформируются по-разному, то в противоположных местах на поверхности кристалла выступают электрические заряды разных знаков. Это и есть пьезоэлектрический эффект. При однородной деформации пьезоэлектрический эффект наблюдается при наличии в кристалле одной или нескольких полярных осей (направлений). Под полярной осью (направлением) кристалла понимают всякую прямую, проведенную через кристалл, оба конца которой неравноценны, т. е. невзаимозаменяемые. Иными словами, при повороте кристалла на 180° вокруг любой оси, перпендикулярной к полярной, он не совмещается сам с собою. Вообще, для существования пьезоэлектрического эффекта при однородной деформации необходимо отсутствие, у кристалла центра симметрии. Действительно, если бы недеформированный кристалл имел центр симметрии, то последний сохранился бы и при однородной деформации кристалла. С другой стороны, в электрически поляризованном кристалле есть особое направление, а именно направление вектора поляризации. При наличии такового кристалл не может иметь центр симметрии. Получившееся противоречие и доказывает наше утверждение. Из 32 кристаллических классов не имеет центра симметрии 21 класс. У одного из них, однако, сочетание других элементов симметрии делает пьезоэлектрический эффект также невозможным. Таким образом, пьезоэлектрические свойства наблюдаются у 20 кристаллических классов.

а) Кристаллическая структура эффекта

Рассмотрим пьезоэлектрический эффект на примере кристалла кварца - важнейшего пьезоэлектрического кристалла, нашедшего широкие научно-технические применения благодаря своим превосходным механическим и электрическим свойствам. При обычных температурах и давлениях кварц встречается в так называемой - модификации. Кристалл -кварца (рис. 1) относится к тригональной системе и имеет три оси симметрии второго порядка, обозначенные на рис. 1 через , , .

 

Они и являются полярными осями кристалла. Каждая из них соединяет противоположные, но неравнозначные ребра шестигранной призмы. Неравнозначность этих ребер видна из того, что к краям одного из них примыкают маленькие грани, обозначенные на рисунке буквами a и b, тогда как у краев другого ребра таких граней нет. Четвертая ось является осью симметрии третьего порядка. Ее называют оптической осью, так как поворот кристалла вокруг этой оси на любой угол не оказывает никакого влияния на распространение света в кристалле.

При механических воздействиях на кристалл кварца на концах полярной оси (точнее, на перпендикулярных к ней гранях) появляются противоположные электрические заряды. Не обязательно, чтобы приложенные внешние силы действовали в направлении рассматриваемой полярной оси. Необходимо лишь, чтобы в результате действия внешних сил возникало растяжение или сжатие вдоль этой оси.

При температуре до 200 °С пьезоэлектрические свойства кварца практически не зависят от температуры. С дальнейшим повышением температуры пьезоэлектрический эффект медленно убывает. При 576 °С -кварц претерпевает фазовое превращение и переходит в -модификацию. Кристаллы -кварца относятся к гексагональной системе, а потому пьезоэлектрические явления в них не наблюдаются в согласии с тем, что было сказано выше. При обратном понижении температуры первоначальная структура кварца восстанавливается, причем это восстановление происходит при температуре, несколько более низкой, чем исходная (гистерезис). Ниже всюду речь идет об - кварце.



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2019-06-03 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: