В кинематических парах пятого класса, будь то поступательная или вращательная пара, реакция характеризуется тремя параметрами: величиной, направлением и точкой приложения. Причём в поступательной паре реакция направлена перпендикулярно направляющей, т.е. известна по направлению. Два другие параметра неизвестны. Во вращательной паре реакция проходит через центр шарнира, т.е. известна её точка приложения. Два другие параметра также неизвестны. Таким образом, в любой кинематической паре пятого класса имеются два неизвестных. Согласно положениям теоретической механики для твёрдого тела (в том числе и для звена механизма) можно в плоскости составить три уравнения равновесия. Для статической определимости системы звеньев необходимо равенство количества уранений равновесия и количества неизвестных в них, то есть
.
Это равенство совпадает с условием существования группы Ассура, следовательно, группа Ассура является статически определимой кинематической цепью, и силовой расчёт механизмов производится по группам Ассура.
21.22.23 я хз вроде по этим)Метод планов сил в механизме с группой Ассура первого вида.
Рассмотрим группу Ассура второго класса второго вида, состоящую из шатуна 2 и ползуна 3 (рис. 5.4,а) и входящую в состав, например, кривошипно-ползунного механизма, одного из самых простых четырёхзвенных механизмов.
Группа изображается в масштабе . На ползун 3 действует внешняя сила и сила инерции ползуна , на шатун действуют сила инерции , приложенная в точке S2, и момент сил инерции . Крайними кинематическими парами группы Ассура являются вращательная пара в точке А и поступательная пара ползуна 3 со стойкой. Отбрасывая кривошип 1 и стойку 0, освобождаем группу Ассура от связей и вместо них прикладываем неизвестные реакции в точке А и в поступательной паре, проведя её линию действия через точку В перпендикулярно направляющей. Отброшенные звенья показаны на схеме штриховыми линиями.
|
Записываем уравнение равновесия всей группы в целом в векторной форме:
.
В правой части этого уравнения стоит нуль, указывающий на равновесие. В этом уравнении первый вектор известен по величине и по направлению, второй известен по направлению, третий известен по величине и по направлению, четвёртый неизвестен совсем. Уравнение в таком виде не может быть решено, так как в нём три неизвестных параметра, а необходимо только два. Для сокращения количества неизвестных разложим вектор на составляющие, одну из которых, , направим перпендикулярно шатуну 2 и назовём тангенциальной составляющей. Вторую, , направим вдоль шатуна и назовём нормальной составляющей. Данная операция соответствует равенству . Составляющая определяется из уравнения равновесия шатуна 2 в форме моментов сил относительно точки В:
,
из которого имеем . Размеры плеч в этих выражениях измеряются в миллиметрах () на схеме механизма и с помощью масштаба переводятся в натуральную величину. Причём плечо есть кратчайшее расстояние линии действия силы от точки B.
Если результат расчёта по приведённому выражению оказывается отрицательным, то в дальнейшем направление следует принять обратным по отношению к принятому на схеме. Составляющая и реакция определяются путём построения векторного многоугольника сил (рис. 5.4,б). Для определения реакции во вращательной паре В между шатуном и ползуном необходимо построить на основе уравнения равновесия план сил шатуна 2 отдельно от ползуна 3 (или ползуна 3 отдельно от шатуна 2). Например, уравнение равновесия шатуна 2 запишется так:
|
.
В этом уравнении первые два вектора известны полностью, третий вектор определится построением треугольника сил.
24. Силовой расчёт кривошипа; уравновешивающая сила (момент).
Как и в случае группы Ассура, необходимо прежде составить расчётную схему, приложив известные силы (рис. 5.5,а). В точке А прикладывается реакция со стороны отброшенного шатуна , которая равна и противоположна найденной выше реакции . В центре масс кривошипа прикладывается сила инерции, равная по величине и направленная к точке А (это соответствует постоянству угловой скорости кривошипа).
В точке О кривошипа действует реакция со стороны стойки, которую необходимо определить. Кроме того, к кривошипу необходимо приложить так называемый уравновешивающий момент , действующий на него со стороны машины-двигателя, приводящей в движение данную машину. Вместо уравновешивающего момента можно приложить уравновешивающую силу , задав точку её приложения, а направление выбрав произвольным. Выбор между уравновешивающими моментом и силой зависит от способа передачи движения от двигателя к технологической машине. Если этот способ в задаче не оговорен, то расчётчик (студент) делает выбор по своему усмотрению. Остановимся здесь на выборе уравновешивающего момента. Определим величину этого момента, составив уравнение равновесия кривошипа в форме моментов сил относительно точки О: , из которого ясно, что . Для нахождения реакции строится план сил согласно приведённому выше уравнению (рис. 5.5,б). Если приложить к кривошипу вместо уравновешивающего момента уравновешивающую силу, то она войдёт в векторное уравнение равновесия и повлияет на реакцию .
|
25. Определение уравновешивающей силы с помощью «жёсткого рычага»
Н. Е. Жуковского.
Способ основан на принципе возможных перемещений: если система сил находится в равновесии, то сумма элементарных работ на возможных перемещениях точек приложения этих сил равна нулю. Можно поделить все работы на бесконечно малый отрезок времени, за который они совершаются, тогда можно заменить элементарные работы на мгновенные мощности и сформулировать принцип так: если система сил находится в равновесии, то сумма мгновенных мощностей этих сил равна нулю, то есть
.
Под знаком суммы в первом слагаемом представлены мгновенные мощности внешних сил, второе слагаемое – мгновенная мощность уравновешивающей силы. Пусть имеется некоторая точка какого-либо звена механизма, движущаяся со скоростью , как показано на рис. 5.6. В этой точке приложена внешняя сила , образующая угол с направлением скорости. Мгновенная мощность этой силы вычисляется по формуле: . Повернём вектор скорости на 90º в любую сторону и переместим вдоль линии её действия так, чтобы она своим концом упиралась в точку . Опустим перпендикуляр из начала повёрнутого вектора скорости на линию действия силы. Длина этого перпендикуляра . Если выражение мощности силы поделить на масштаб скорости , т. е. , то, как видно в правой части выражения, произведение силы на плечо даёт момент этой силы относительно начала повёрнутого на 90º вектора скорости точки приложения силы. Следовательно, мгновенную мощность силы можно представить как её момент относительно повёрнутого вектора скорости точки приложения. Такую операцию можно выполнить с любой внешней силой, тогда вместо равенства нулю мощностей можно записать равенство нулю моментов: . Из этого вытекает следующее положение: если механизм находится в равновесии, то его повернутый на 90º в любую сторону план скоростей с приложенными к нему в соответствующих точках внешними силами как условный жёсткий рычаг также находится в равновесии.
Это положение позволяет определить уравновешивающую силу.
Для решения задачи возьмём кривошипно-ползунный механизм в произвольном положении и приложим к нему две силы, как показано на рис. 5.7. Построим повёрнутый на 90º план скоростей и на концы векторов точек приложения сил перенесём данные силы, сохраняя их заданные направления. К концу вектора скорости точки А кривошипа приложим уравновешивающую силу перпендикулярно кривошипу. Записав уравнение равновесия плана скоростей, как жёсткого рычага, в форме моментов относительно полюса плана, имеем
,
откуда . Чёрточки над обозначениями плеч указывают на то, что они берутся в виде отрезков с плана сил. Их перевод в натуральные величины не требуется, так как отношение плеч от масштаба не зависит.
26. Задачи динамики машин
В данном разделе изучается движение звеньев механизма с учетом действующих на них сил. При этом рассматриваются следующие основные задачи динамики:
1) изучение сил, действующих на звенья механизма, и определение неизвестных сил при заданном законе движения на входе;
2) задача об энергетическом балансе машины;
3) установление истинного закона движения под действием заданных сил;
4) регулирование хода машины;
5) уравновешивание сил инерции;
6) динамика приводов.
27..Динамическая модель машины; приведённый момент инерции механизма машины.
В связи с необходимостью упрощения расчётной схемы и большей наглядности, а также сокращения расчётов реальную машину заменяют её моделью, сохраняющей те свойства машины, которые изучаются на данном этапе исследования. Такая модель представляет собой некоторый условный диск, вращающийся с кривошипом как одно целое, т. е. с его угловой скоростью (рис. 6.1), обладающий так называемым приведённым моментом инерции. На этой основе кривошип или другое ведущее звено, с которым связан условный диск, называется звеном приведения. На диск действуют приведённый момент движущих сил, направленный в сторону вращения, и приведённый момент сил сопротивления, направленный навстречу вращению.
На схеме рис. 6.1 обозначены - приведённый момент инерции механизма, - приведённый момент движущих сил и - приведённый момент сил сопротивления.