Леонард Эйлер и выпучивание тонких стержней и пластин




 

Все, о чем мы говорили до сих пор, применимо лишь к относительно коротким и толстым стержням и другим сжатым элементам. Мы видели, что при сжатии они обыкновенно разрушаются вследствие сдвига или образования локальных складок. Однако огромное количество сжатых конструкций содержит длинные и тонкие элементы, которые выходят из строя совершенно по-другому. Длинный стержень, тонкий лист металла или страница этой книги выпучиваются при сжатии, теряя способность нести нагрузку. В этом легко убедиться с помощью простейшего эксперимента: возьмите лист бумаги и попытайтесь сжать его в продольном направлении. Такой вид потери несущей способности (с ним связаны важные технические и экономические последствия) называется потерей устойчивости. Впервые он был изучен Леонардом Эйлером (1707-1783), и потому нередко говорят об устойчивости (или неустойчивости) по Эйлеру.

Эйлер имел немецко-швейцарское происхождение, в его семье были известные математики. Он рано приобрел имя в той же области, и еще очень молодым был приглашен Екатериной II в Россию. Большую часть жизни он провел при дворе в Петербурге, лишь по временам, в моменты острой политической ситуации, находя пристанище у Фридриха II в Потсдаме. Жизнь при дворах просвещенных деспотов в середине XVIII в. была, должно быть, интересна и колоритна, однако в многотомных сочинениях Эйлера мы не найдем каких-либо упоминаний об этом. Насколько я мог выяснить, ни одному из его биографов не удалось установить хотя бы одного случая или происшествия в его жизни, которые могли бы удовлетворить обычное человеческое любопытство[107]. Он просто в течение очень многих лет постоянно занимался математикой, описывая свои результаты в огромном количестве научных статей, которые и после его смерти все еще публиковались в течение сорока лет.

Конечно, Эйлер совсем не собирался заниматься несущей способностью сжатого стержня как конструкционного элемента. Просто среди многих других своих математических открытий он изобрел то, что теперь называется вариационным исчислением, и он искал задачи, к которым можно было бы применить этот новый математический метод. Один из его друзей предложил попробовать этот метод для определения наименьшей высоты тонкого вертикального стержня, при которой этот стержень начнет выпучиваться под собственным весом. Такая формулировка этой не очень реальной задачи объясняется тем, что, как мы уже упоминали в гл. 2 понятия напряжения и деформации возникли лишь в значительно более поздние времена. Для ее решения нужно было применить вариационный метод. Если переложить полученный Эйлером результат на современный язык, то получится то, что сейчас называется формулой Эйлера для критической нагрузки потери устойчивости продольно сжатого стержня, а именно: P = π2 (EI / L 2), где P - нагрузка, при которой выпучиваются стержень или панель; E - модуль Юнга материала; I - момент инерции поперечного сечения стержня или панели (гл. 10); L - длина стержня. Естественно, все эти величины должны быть выражены в одной и той же системе единиц. (Удивительно, что так много важных расчетных формул имеют столь простой вид[108].)

Формула Эйлера применима к длинным и тонким колоннам и стержням всех видов - как сплошным так и пустотелым, а что, быть может, и более важно - к тонким панелям и пластинам, которые встречаются в конструкциях самолетов, кораблей и автомобилей. Если мы построим график зависимости критической нагрузки стержня или панели от длины, то получится нечто похожее на рис. 142, на котором показаны два возможных механизма разрушения.

Короткие стержни разрушаются описанным выше путем с образованием бочки или дроблением на мелкие куски. Когда отношение длины к толщине стержня достигает величины 5-10, эта линия пересекает кривую, соответствующую эйлеровой форме потери устойчивости. Теперь более опасным становится выпучивание, и длинный стержень выходит из строя вследствие выпучивания. В действительности переход от разрушения материала к потере устойчивости происходит не так резко, существует некая переходная область, отмеченная на рис. 142 пунктиром.

 

Рис. 142. Зависимость предельного сжимающего напряжения от длины стержня.

Приведенная выше формула Эйлера относится к тому случаю, когда стержень или панель имеют шарнирное закрепление и могут свободно поворачиваться (рис. 143). Обычно все, что препятствует концам стержня или панели поворачиваться приводит к увеличению критической нагрузки потери устойчивости. В крайнем случае, когда оба конца стержня жестко заделаны, его критическая нагрузка увеличивается в 4 раза. Очень часто, однако, для жесткой заделки необходимо существенное стеснение концов, а это приводит к увеличению веса, сложности и стоимости всей конструкции, поэтому она становится невыгодной.

 

Рис. 143. Различные условия эйлеровой формы потери устойчивости. а - оба конца шарнирно оперты; б - оба конца заделаны; в - один конец заделан, а второй шарнирно оперт и может перемещаться в горизонтальном направлении.

Далее, жесткая заделка концов передает любые монтажные несоосности самому стержню. При этом стержень может оказаться изогнутым еще до нагружения и его предельная нагрузка упадет. Вот почему жесткая установка мачты, при которой она одновременно крепится и к палубному перекрытию, и к килю, сейчас уже вышла из употребления (рис. 144).

 

Рис. 144. Изогнутый до нагружения стержень (в данном случае мачта) теряет устойчивость при меньшей нагрузке.

Следует отметить, что в выписанную нами формулу Эйлера не входит предел прочности материала. Нагрузка, при которой стержень или панель данной длины теряет устойчивость, зависит только от момента инерции сечения I и модуля Юнга (жесткости) материала. Длинный стержень не разрушается при выпучивании. Он только упруго изгибается таким образом, чтобы "выскользнуть" из-под нагрузки. Если при выпучивании не был достигнут "предел упругости" материала, то после снятия нагрузки стержень опять выпрямится, и, спружинив, как ни в чем не бывало примет свою прежнюю форму.

Это свойство часто может быть весьма полезным, поскольку, основываясь на нем, можно создавать "неразрушающиеся" конструкции. Ковры и ковровые дорожки не портятся именно по этой причине, и природа, конечно же, широко использует этот принцип, особенно в отношении низкорослых растений, например травы, которую всегда довольно трудно вытоптать. Так, мы спокойно гуляем по лужайке, не причиняя ей большого вреда. Именно гениальная комбинация острых колючек с открытием д-ра Эйлера делает живую изгородь одновременно неразрушаемой и труднопреодолимой для людей и скота. С другой стороны, для комаров и других насекомых, использующих в качестве оружия длинное и тонкое жало, природа вынуждена была "изобрести" прямо-таки невообразимое количество самых разных конструкционных уловок, чтобы предотвратить потерю устойчивости этих тонких, жалящих нас стержней.

При жизни Эйлера его формула не могла найти сколько-нибудь значительного использования в технике. Практически ее могли применить лишь при проектировании корабельных мачт и других стоек. Однако корабельные мастера тех времен уже справились с этой проблемой. В замечательных справочниках XVIII в. по кораблестроению, таких, как "Основы изготовления мачт, парусов и такелажа" Стила, содержатся подробные таблицы, где приведены размеры брусьев любого типа, основанные на опыте, и сомнительно, чтобы эти рекомендации могли быть существенно улучшены с помощью вычислений.

Серьезный интерес к явлению потери устойчивости возник лишь столетие спустя и был связан с возросшим использованием листовой стали. Стальные листы были, естественно, тоньше, чем каменная кладка и деревянные детали, к которым так привыкли инженеры. В 1848 г. при постройке железнодорожного моста через пролив Менай[109] расчеты на устойчивость впервые делались для серьезных практических целей. Этот мост явился совместным детищем трех выдающихся людей: Роберта Стефенсона (1802-1859), Итона Ходжинсона (1789-1861), математика и одного из первых профессоров-инженеров, и Вильяма Фейрберна (1789-1874), пионера конструкционного использования листовой стали.

Подвесные мосты Стефенсона оказались неудачными из-за своей излишней гибкости. К тому же адмиралтейство настаивало, и не без оснований, на тридцатиметровой высоте пролета, чтобы под мостом могли проходить корабли. Удовлетворить требованиям как жесткости, так и высоты можно было лишь единственным путем - спроектировав мост балочного типа невиданной до этого длины. По ряду соображений наилучшим вариантом казалась балка в форме трубы, собранная из листовой стали, внутри которой двигался бы поезд. Длина каждой секции должна была составлять около 140 м.

Вскоре стало очевидным, что труднее всего справиться с проблемой устойчивости стальных панелей, образующих верхнюю, сжатую сторону балки. Для простых панелей и стержней формула Эйлера является точной, но здесь речь шла о мостовых балках достаточно сложной формы, для расчета которых в то время не было еще соответствующей теории. Выход был только один - эксперименты на моделях. Как и можно было ожидать, результаты оказались довольно путаными и ненадежными, причем до такой степени, что все три проектировщика перессорились между собой. Казалось, их партнерство распадется, так и не породив конструкции действительно надежного моста. В конце концов порешили делать для моста клетчатые коробчатые балки (рис. 145). Ко всеобщему облегчению, мост оказался удачным и служит по сей день.

 

Рис. 145. Балка в виде трубы коробчатого сечения (мост "Британия"[110]).

Со времен Стефенсона проделано огромное количество математических расчетов устойчивости тонких оболочек, но проектирование таких конструкций все еще сопровождается значительно большей, чем обычно, неопределенностью. Поэтому разработка ответственных конструкций такого типа может обходиться достаточно дорого из-за возможных натурных испытаний в процессе проектирования и доводки.

 

Трубы, корабли и бамбук, или кое-что о локальной потере устойчивости

 

Согласно Эйлеру, нагрузка, при которой стержень теряет устойчивость, определяется величиной EI / L 2, и поэтому критические нагрузки длинных колонн на сжатие обычно очень и очень малы. Единственное, что можно здесь сделать, - это увеличивать EI по возможности пропорционально L 2. Для большинства материалов модуль упругости Юнга Е практически постоянен, так что в действительности мы можем лишь увеличивать момент инерции поперечного сечения I. Это значит, что колонны следует делать толще. Именно так и поступают при использовании каменной кладки, например в мощных колоннах дорических храмов. Но вес при этом получается чрезмерно большим, и если мы хотим сделать легкую конструкцию, то должны каким-то образом развить поперечное сечение. Иногда его делают в форме швеллера, а иногда придают коробчатую форму. Но, как правило, лучшим и наиболее эффективным оказывается стержень в виде трубы.

Трубы очень популярны не только среди инженеров - природа тоже повсеместно отдает предпочтение трубчатым стержням. Однако труба при сжатии может терять устойчивость, и происходит это двумя путями. Один путь мы уже описали - это эйлерова, или длинноволновая, форма выпучивания. Другой путь - коротковолновая форма выпучивания, когда в каком-то месте на стенке трубы образуются вмятины и выпучины. Если радиус трубы велик, а стенки тонки, труба может быть совершенно устойчива к длинноволновой форме выпучивания, но она выйдет из строя из-за локального сморщивания (рис. 146). Это легко продемонстрировать на примере тонкостенного мундштука папиросы. Именно этот эффект накладывает ограничения на использование простых труб и тонкостенных цилиндров при сжатии[111].

Рис. 146. Локальная потеря устойчивости в тонкостенной трубе при осевом сжатии.

Обычный способ борьбы с потерей устойчивости такого типа состоит в подкреплении стенок конструкции с помощью таких элементов, как шпангоуты и стрингеры и т.п. Шпангоуты - это ребра жесткости, идущие по периметру сечения, а ребра жесткости, идущие в продольном направлении, - это стрингеры. Жесткость корпуса корабля чаще всего увеличивают с помощью шпангоутов и переборок, хотя с недавних пор большие танкеры строят по системе Ишервуда с использованием продольных стрингеров. Сложная оболочечная конструкция, подобная фюзеляжу самолета, обычно подкрепляется и стрингерами, и шпангоутами. Пустотелые стебли травы и бамбука, которые имеют тенденцию сплющиваться при изгибе, очень изящно подкреплены "узлами", или перегородками, размещенными через определенные интервалы по всей длине стебля (рис. 147 и 148).

 

Рис. 147. Два способа увеличения жесткости стеблей растений с целью предотвращения локальной потери устойчивости: а - продольные стрингеры; б - узлы, или перегородки, характерные для травы и бамбука.

 

Рис. 148. Подкрепленная конструкция корпуса судна, часто используемая в нефтяных танкерах.

 



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2019-06-26 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: