Определение оптимального момента перехода на статистические методы диагностики




 

Укажем только, что можно выделить два подхода к оценке параметров распределения – байесовский и небайесовский.

Небайесовский подход можно назвать в какой-то мере классическим, ибо до недавнего времени именно он имел большое распространение. Чтобы проиллюстрировать его, положим, что наблюдаемая контрольная величина имеет распределение с плотностью , где параметр неизвестен. В классическом подходе выборочных оценок оценка выбирается как функция от выборки . Окончательный вывод делается путем сравнения наблюдаемого значения с его выборочным распределением, причем функция, обычно выбирается так, чтобы выборочное распределение отдельных оценок при различных выборках было как можно сильней концентрированным, вокруг истинного значения параметра . При этом к оценкам, обычно предъявляется целый ряд требований, которые позволяют сузить их класс. Это требования типа несмещенности, состоятельности, эффективности, которые описывают асимптотическое поведение оценки относительно истинного значения параметра. Чтобы оценить степень отклонения истинного значения, вычисляется доверительный интервал , где и являются такими функциями от , чтобы при повторении следующих выборок объемом истинное покрывалось интервалом с вероятностью .

Как правило, качество подобного рода классических оценок гарантируется лишь асимптотически при выборках большого объема. В случае же малых выборок приложение результатов асимптотической теории представляется недостаточно обоснованным. А при обучении системы диагностики желательно в среднем обойтись именно малыми выборками. К тому же, классический подход практически не использует ту априорную информацию о возможных зданиях в, которая всегда в какой-то степени имеется. Поэтому вероятностная модель, построенная на классических оценках, будет в нашем случае не полностью адекватной реальности. Действительно, результаты испытаний на заводе-изготовителе объекта, как правило, уже дают некоторого априорную информацию о начальных значениях, тенденции изменения и диапазоне изменения неизвестного параметра .

Преимущества, которые дает байесовский подход к решению задачи обучения системы диагностики.

a) Байесовский подход может применяться к любым вариантам и частным случаям задачи обучения.

b) При нем не возникает сложного вопроса о выборе необходимых оценок неизвестного параметра и доверительных интервалов, как в классической выборочной теории.

c) Он позволяет довольно просто использовать последовательный анализ результатов обучения, что в классическом подходе очень сложно, а зачастую невозможно.

d) Если практическая проверка применяемой байесовской модели процесса обучения покажет ее некоторую неадекватность, то она легко может быть изменена так, чтобы устранить указанное несоответствие. Причем изменения делаются в рамках самого байесовского подхода.

e) При байесовском подходе могут быть выделены так называемые обновляющие процессы, по изменению характеристик которых можно очень оперативно в ходе самого обучения проверить степень адекватности выбранной вероятностной модели к действительности. В математической статистике подобная процедура носит название анализ остатков (residuals).

f) В случае если априорной информации очень мало, априорное распределение неизвестного параметра все равно может достаточно обоснованно быть выбранным в классе так называемых неинформативных априорных распределений.

g) Если же априорной информации достаточно для формирования априорного распределения, то выбор его в соответствующем классе сопряженных распределений очень упрощает все необходимые вычисления и снижает саму размерность задачи.

 



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2019-12-28 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: