В основном построение систем диагностики основывается на статистических методах. Под статистическими методами диагностики здесь и ниже имеются в виду методы, позволяющие организовать стохастически оптимальное управление диагностикой. Статистические методы диагностики уже достаточно четко проявили свои достоинства, как в теоретическом, так и в прикладном аспектах.
Опишем сущность стохастической диагностики. На рисунке 2.1 дана структурная схема системы диагностики поясним ее составляющие:
1 – объект диагностики. Он находится в таком состоянии , о котором перед началом диагностики известно, что оно реализуется с вероятностью
. Если с объектом проводится проверка
, то имеется вероятность
получить результат
. Ниже под
и
будут иметься в виду плотности вероятности для непрерывных
и
или функции распределения в общем случае.
2 – блок вычисления функции правдоподобия . Напомним, что функция правдоподобия – это вероятность
, рассмотренная как функция от
3 – блок вычисления апостериорной вероятности
Здесь – шаг диагностического процесса, а проще порядковый номер проводимой проверки объекта. Формула Байеса играет важную роль в стохастическом управлении диагностикой. Видно, что функция правдоподобия имеет в ней большое значение. Вся информация об объекте, в ходе очередной проверки содержится в
. И именно через функцию правдоподобия наблюдения изменяют априорное знание о
. Заметим, что умножение функции правдоподобия на постоянную не изменяет апостериорной вероятности, ибо эта постоянная пропадает при нормировке вероятности в единицу. Из формул видно, что апостериорное распределение может быть вычислено и после каждой проверки, и после их любого набора;
4 – блок определения целесообразности остановки диагностического процесса или его продолжения;
5 – блок выбора следующей проверки объекта; работает, если в блоке 4 принято решение не останавливать диагностику;
6 – блок выработки оценки состояния объекта (его неисправности); работает в некоторый момент
, если в блоке 4 принято решение об остановке диагностики.
Рисунок 2.1 – Структурная схема системы диагностики, реализующей управляемый случайный диагностический процесс
Таким образом, видно, что диагностический процесс, в статистической диагностике трактуется как управляемый случайный процесс с дискретным временем , где
– случайный момент остановки процесса проверки объекта. Оптимизация этого процесса проводится в соответствии с определенным критерием, который учитывает траекторные потери
на проведение проверок
U и терминальные потери
от ошибочного диагноза. Последние связаны с байесовским решением
о виде неисправности объекта, которое на основе
минимизирует математическое ожидание некоторой функции потерь
.
Таким образом, общая стратегия диагностики состоит из трех составляющих:
– стратегии выбора очередной проверки объекта;
– стратегии (момента) остановки диагностического процесса;
– стратегии принятия окончательного диагноза.
Практика использования статистической диагностики в технике привела к одному общему выводу – ее эффективность прямо пропорциональна знанию указанных функций распределения вероятностей тех случайных величин, которые и делают диагностический процесс случайным (распределение неисправностей, результатов проверок и т.д.). Это привело к постановке задач об адаптации системы диагностики к реальной статистической структуре диагностических данных. Однако большого развития эти работы не получили из-за того, что в конце 60-х годов системы диагностики, как правило, не имели в своем составе ЭВМ, что препятствовало автоматическому накоплению и обработке диагностической информации за достаточно большое число диагностик.
Выше эта задача была упомянута как задача обучения системы диагностики. Речь идет о параметрической оценке тех функций распределения, которые определяют статистическую структуру контролируемых величин объекта (результатов проверок).
Естественно, что сам процесс обучения системы диагностики должен каким-то образом оптимизироваться. Действительно, если обучение слишком затянется, то перейти на статистическую диагностику можно будет, лишь в конце жизненного цикла объекта. Ясно, что в этом случае получаемая выгода будет маленькой. Вместе с тем, если переход на статистические методы будет преждевременным, это также не даст большого выигрыша, а иногда может привести к излишним потерям. Действительно, ведь обучение системы диагностики – это оценка распределения истории диагноза. Если обучающая выборка слишком мала, то и достоверность оценки распределения будет недостаточной. Поэтому и статистическая оптимизация процесса диагностики по такой оценке не будет эффективной.
Выше уже говорилось о том, что оценка распределения включает оценку его вида и оценку соответствующих параметров. Первая задача решается методами непараметрической статистики. Вторая использует, если говорить обобщенно, в основном две разновидности методов – байесовские и небайесовские.
Учитывая опыт эксплуатации однотипных объектов, можно составить определенное мнение о семействах тех распределений, которые встречаются в задачах их диагностики. Как правило, это мультиномиальные и экспоненциальные семейства. Тем не менее, конкретное значение их параметров для объекта конкретного типа остается зачастую неизвестным. Именно поэтому задача оценки неизвестного распределения истории диагноза, в первую очередь, является задачей оценки параметров этого распределения. Также будет приводится обобщение некоторых видов непрерывных распределений, что дает возможность решать параметрическими методами и ряд непараметрических задач.
До тех пор, пока не получена оценка для неизвестного параметра
истории диагноза, нельзя статистически оптимизировать алгоритмы диагностики. С одной стороны, хотелось бы такую оценку получить как можно быстрее, с другой – как можно точнее. Вот эти противоречивые требования и создают основу для введения такого критерия оптимизации процесса обучения системы диагностики, который бы учитывал как нарастание траекторных потерь на сбор диагностической информации в виде историй диагноза, так и ожидаемое значение терминального выигрыша от перехода на статистические методы диагностики.
Будем использовать критерий оптимизации, который максимизирует ожидаемую сумму траекторных потерь и терминального выигрыша. Безусловно, что эквивалентным является и такой подход, когда минимизируется ожидаемая сумма траекторных и терминальных потерь.
Траекторные потери на обучение определяются, в основном, отсутствием статистической оптимизации диагностики до того, как получена оценка , К тому же во время обучения занимаются определенные вычислительные ресурсы на ее обслуживание и реализацию. Терминальный выигрыш тем больше, чем точнее оценка неизвестного параметра. Он определяется той определенной экономией, которая может быть получена после перехода на статистические методы диагностики после получения оценки
. Естественно, что эти две составляющие с помощью соответствующих коэффициентов должны быть приведены или к единой размерности, или даже к безразмерным величинам.
Подобная нормировка составляющих важна уже на этапе решения частных задач обучения. А оптимизации самого процесса обучения выливается в принятие двух решений:
a) об остановке процесса обучения;
b) о выработке оценки неизвестного параметра и о переходе на статистические методы диагностики с этой оценкой.