Обучение системы диагностики непараметрический общий случай




Обучение системы диагностики в общем случае должно строиться по схеме на рисунок 2.2, где

1 – блок выработки очередной гипотезы о виде распределения наблюдения (измеряемой контрольной величины) ;

2 – блок оптимальной оценки параметров;

3 – блок проверки гипотезы о виде распределения .\

 


Рисунок 2.2 – Схема обучения системы диагностики в общем случае

Общая идея работы блока 3 заключается в следующем. Очевидно, если первая гипотеза блока 1 отвергнута блоком 3, то при оценке параметров следующей гипотезы в блоке 2 может использоваться уже накопленная история , Возможно, что она сразу окажется достаточной и для оценки параметров для второй гипотезы. Если нет, то блок 2 будет ждать накопления до . Гипотезой назовем непустое подмножество множества мер , а статистику со значением в [0, 1], где - момент остановки параметрического обучения системы диагностики, назовем рандомизированной стратегией непараметрического обучения системы диагностики. Считаем, что моменты , , на рис. 2.2 диктует блок 2. Это позволяет упростить рассуждения, не снижая их общности. Возможен также вариант, когда Поэтому ниже опустим все нюансы, связанные с , поскольку они не повлияют на основные принципы работы блока 3.

Будем разбирать случай, когда в блоке 3 проверяется гипотеза при альтернативе при достаточной выборке .

Необходимо дать основные рекомендации по выбору . Стратегия приписывает вероятность гипотезе Г и вероятность (1 – ) гипотезе Г. Таким образом, налицо рандомизация. Поэтому в непараметрической статистике оперируют в основном с математическим ожиданием

 

 

называемым мощностью стратегии непараметрического обучения (оценки функции распределения). Естественно, что две стратегии непараметрической оценки функции распределения эквивалентны, если у них одинаковая функция мощности. Неправильное непараметрическое решение о функции распределения может быть принято только двумя способами:

a) можно выбрать , в то время как ; этому событию отвечает вероятность ;

b) принять , когда в действительности ; этому событию отвечает вероятность ,

Уровнем значимости стратегии называется

Стратегия называется несмещенной, если

Использование сопряженных распределений. Сначала уточним еще раз понятие статистической структуры измерений. Выяснено, что и задачу непараметрической оценки в большом числе случаев можно свести к параметрической оценке путем использования обобщенных распределений, то необходимо более четко описать именно параметризованную статистическую структуру наблюдений. Последней будем называть

 

. (2.8)

 

 


Напомним, что - измеримое пространство историй диагнозов или просто значений контролируемых величин, получаемых в каждой -й диагностике, .

Структура (2.8) написана для случая одной диагностики. Она отражает тот факт, что значение конкретной вероятности , определенной на , известно лишь с точностью до неизвестного параметра . Если же речь идет о диагностиках, где каждая связана с одной и той же структурой (2.8), то будем ее записывать как

 

(2.9)

 

Это параметризованная структура повторной выборки.

Покажем теперь связь с этой структурой апостериорной вероятности на , в терминах которой сформулирована вся задача обучения системы диагностики.

Теорема (Неймана) о факторизации говорит, что если имеет место структура наблюдений (2.9), то статистика достаточна тогда и только тогда, когда ; почти всюду,

 

, (2.10)

 

Выше в дополнительный индекс , говорит о том, что речь идет о вероятности на . Структурная схема на рисунке 2.3 иллюстрирует взаимосвязь упомянутых выше пространств.

 

 


Рисунок 2.3 – Структура для случая одной диагностики

 

Заметим еще, что Нейман предполагал также существование плотности по

 

 

некоторой мере . В непрерывных наблюдениях это естественно, а если наблюдения дискретны (само дискретно), то на дискретных координатах можно брать как считающую меру. Используя интеграл Лебега-Стильтьеса, можем для любой статистики написать где для дискретных составляющих интегрирование сводится к суммированию, а для непрерывных компонент .

 

 

В (2.10) показана лишь априорная вероятность на . Покажем, как понятие достаточности статистики выражается в терминах апостериорной вероятности .

Статистика является достаточной, если


 

т.е. если на зависит лишь от . Это получается непосредственно из формулы Байеса.

Действительно,

 

 

если

 

 

то

 

 

Сравнение с (2.10) показывает, что

 

 

Здесь через обозначалась вероятность на

 

 


Заключение

 

В данной работе, были рассмотрены существующие ротационные системы, был проведён их анализ. Освещены принципы возникновения паразитных колебаний приводящих к поломке или разрушению механизмов. Изучены методы их измерения и контроля.

Был проведён анализ принципов и методов разработки и реализации методов и средств обработки информации поступающей с дигнастируемой системы.

Были рассмотрены различные методы и алгоритмы обработки данных, в том числе метод статистического обучения системы диагностики.

Проведено исследование структурной схемы обучаемой системы диагностики, отображающей взаимодействие двух пространств.

Проведенные в данной работе исследования показали, что для повышения эффективности, надёжности и экономичности работы элементов системы автоматизированного управления решать поставленную задачу практичнее всего на основе различных методов и средств обработки информации. Используя при этом методы статистического обучения системы диагностики

 

 



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2019-12-28 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: