Элонгация полипептидных цепей




Элонгация полипептидных цепей в ходе эукариотической трансляции традиционно пользовалась меньшим вниманием исследователей по сравнению с инициацией, поскольку считалось, что ее механизмы в основных чертах идентичны таковым бактерий. Дальнейшие исследования показали, что данная точка зрения в основном соответствует действительности, хотя эукариотическая система трансляции обладает более сложным набором факторов элонгации.

Факторы и механизмы элонгации. Эукариотические клетки содержат в большом количестве фактор элонгации eEF1A, который является функциональным гомологом бактериального фактора EF1A(EF-Tu). Так же как и у бактерий, этот фактор образует тройной комплекс с GTP и аминоацил-тРНК, обеспечивая вхождение последней в А-участок элонгирующей рибосомы. Два других эукариотических фактора eEF1B и eEF2 резко отличаются от бактериальных функциональных аналогов EF1B(EF-Ts) и EF2(EF-G) по аминокислотным последовательностям. Гетеротримерный фактор eEF1B, как и его бактериальный аналог, катализирует обмен GDP на GTP в комплексе eEF1A–GDP. Фактор eEF2, по аналогии с бактериальными системами, обеспечивает транслокацию пептидил-тРНК в P-участок рибосом и перенос деацилированной тРНК в E-участок. У высших организмов этот фактор служит мишенью регуляторных воздействий через фосфорилирование (см. раздел 3.4). Замечательным свойством факторов eEF1A и eEF2 является способность связываться с компонентами цитоскелета эукариотических клеток. Полагают, что это их свойство может обеспечивать один из механизмов внутриклеточного транспорта мРНК, направляющих ее в полисомы.

Растущий полипептид выводится в цитоплазму через канал, начало которого расположено на поверхности рибосомы, где он взаимодействует с белками, распознающими сигнальную последовательность, или с другими цитоплазматическими факторами, которые обеспечивают его направленный транспорт внутри эукариотической клетки. У бактерий растущая полипептидная цепь может вызывать уменьшение скорости элонгации, а природа предпоследней аминокислоты оказывает сильное влияние на терминацию трансляции. Предполагают, что такого рода эффекты являются следствием взаимодействия между строящимся пептидом и факторами трансляции, рРНК или непосредственно каналом, через который он переносится к поверхности рибосомы. Подобные механизмы, по-видимому, функционируют и у эукариот. У дрожжей, как и у E. coli, скорость элонгации трансляции снижается в присутствии редко встречающихся кодонов в мРНК. Наличие определенного числа таких кодонов вблизи сайта инициации трансляции значительно снижает скорость считывания соответствующих ОРС. На скорость декодирования мРНК рибосомами оказывают влияние и характер фолдинга строящихся полипептидных цепей (см. раздел 3.6.1), а также сигнальные последовательности аминокислот, определяющие направление их посттрансляционного транспорта внутри эукариотических клеток.

Уникальный фактор элонгации eEF-3 дрожжей. Клетки дрожжей и других грибов обладают дополнительным фактором элонгации eEF3, аналог которого пока не обнаружен у животных. Фактор является мономерным белком с молекулярной массой 116 кДа, обладающим ATPазной активностью. Функциональная роль этого фактора заключается в стимуляции вхождения тройного комплекса eEF1A•аа-тРНК•GTP в А-участок элонгирующей рибосомы, что является следствием его стимулирующего влияния на освобождение деацилированной тРНК из Е-участка рибосомы. Освобождение деацилированной тРНК сопряжено с гидролизом ATP, катализируемым этим фактором. Несмотря на то что рибосомы животных обладают АТРазной активностью, гидролиз АТР для трансляции, осуществляемой этими рибосомами, не требуется.

Благодаря своей уникальности, фактор eEF3 активно исследуется фармацевтическими компаниями как потенциальная мишень для противогрибковых препаратов.

Терминация трансляции

В эукариотических белоксинтезирующих системах терминация трансляции, как и у бактерий, контролируется специфическими рилизинг-факторами. Однако у эукариот эти факторы менее разнообразны. В частности, у них отсутствует функциональный аналог бактериального фактора RRF/RF4.

Факторы терминации. По современным представлениям, элонгирующая эукариотическая рибосома распознает стоп-кодоны, находящиеся в одной рамке с основными ОРС, после взаимодействия с гетеродимерным комплексом рилизинг-факторов (RF), в состав которого входят факторы eRF1 и eRF3. Фактор eRF1 необходим для распознавания всех трех терминирующих кодонов (UAA, UAG и UGA) и освобождения синтезированного полипептида. Фактор eRF3 является GTPазой, обладающей гомологией с eEF1A, которая, гидролизуя GTP, стимулирует терминацию независимо от последовательности нуклеотидов в терминирующих кодонах.

Влияние нуклеотидного контекста на эффективность терминации. Два основных фактора оказывают влияние на эффективность терминации трансляции у эукариот. Этими факторами являются последовательности нуклеотидов в окрестностях терминирующих кодонов и структура C-концевой части строящейся полипептидной цепи. Терминирующие кодоны дрожжей по частоте их использования можно расположить в следующий ряд: UAA(53%) > UGA(27%) > UAG(20%). Если анализировать только активно экспрессирующиеся гены, то частота использования UAA оказывается еще большей – 87%. Анализ последовательностей нуклеотидов в окрестностях терминирующих кодонов показал, что и они не являются случайными. Путем исследования способности следующего за стоп-кодоном нуклеотида изменять эффективность его супрессии в гене lacZ было установлено их следующее влияние на усиление терминации трансляции на соответствующих терминирующих кодонах: G>U>A>C (UGA), G>A>U>C (UAA) и A>U>C>G (UAG). Третий от стоп-кодона нижерасположенный нуклеотид оказывает лишь слабое влияние на эффективность терминации. Эти и другие такого рода данные были интерпретированы в пользу участия следующего за стоп-кодоном нуклеотида во взаимодействии eRF-факторов с терминирующей рибосомой.

Результаты исследования возможной роли нуклеотидов, предшествующих терминирующему кодону, в терминации трансляции интерпретировать труднее, так как соответствующие замены могут непосредственно изменять первичную структуру С-концевой последовательности строящихся полипептидов. Такие эффекты были обнаружены у E. coli: по крайней мере, две последние аминокислоты оказывают влияние на эффективность терминации синтеза соответствующего белка. У этой бактерии перед кодоном UGA чаще встречаются кодоны UCC(Ser), а также UUC и UUU(Phe), в то время как перед кодоном UUA – кодон AAG(Lys). Эти особенности объясняют возможным участием пептидил-тРНК, находящейся в P-участке рибосом, или самой С-концевой аминокислоты в функционировании RF-факторов в A-участке. Зависимость терминации от природы аминокислот в С-концевой части строящегося полипептида была прямо продемонстрирована для E. coliи дрожжей.



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2022-11-01 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: