Применение нейронных сетей для оптического распознавания символов




Исходя из изложенного в предыдущем разделе, применение нейронных сетей при распознавании символов возможно только после решения задачи выделения характерных черт. После того, как черты выделены, их можно подать на вход нейронной сети и определить класс символа, характеризующегося этими чертами. Однако само определение того, какие именно черты следует искать, сколько их будет и в каком виде они будут подаваться на вход нейронной сети — задача нетривиальная. Так же нетривиальной является задача определения числа слоёв и числа нейронов в нейронной сети (для тех сетей, к которым эти понятия применимы). Поэтому применение большинства нейронных сетей для эффективного распознавания символов достаточно затруднительно.

Перцептрон

Перцептрон — математическая и компьютерная модель восприятия информации мозгом (кибернетическая модель мозга), предложенная Фрэнком Розенблаттом в 1957 году и реализованная в виде электронной машины «Марк-1» в 1960 году. Перцептрон стал одной из первых моделей нейросетей, а «Марк-1» — первым в мире нейрокомпьютером. Несмотря на свою простоту, перцептрон способен обучаться и решать довольно сложные задачи.

Перцептрон состоит из трёх типов элементов: поступающие от сенсоров сигналы передаются ассоциативным элементам, а затем реагирующим элементам. Таким образом, перцептроны позволяют создать набор «ассоциаций» между входными стимулами и необходимой реакцией на выходе. В биологическом плане это соответствует преобразованию, например, зрительной информации в физиологический ответ от двигательных нейронов. Согласно современной терминологии, перцептроны могут быть классифицированы как искусственные нейронные сети:

· с одним скрытым слоем;

· с пороговой передаточной функцией;

· с прямым распространением сигнала.

Элементарный перцептрон состоит из элементов 3-х типов: S-элементов, A-элементов и одного R-элемента (см. Рис. 1). S-элементы — это слой сенсоров, или рецепторов. В физическом воплощении они соответствуют, например, светочувствительным клеткам сетчатки глаза или фоторезисторам матрицы камеры. Каждый рецептор может находиться в одном из двух состояний — покоя или возбуждения, и только в последнем случае он передаёт единичный сигнал в следующий слой, ассоциативным элементам.

A-элементы называются ассоциативными, потому что каждому такому элементу, как правило, соответствует целый набор (ассоциация) S-элементов. A-элемент активизируется, как только количество сигналов от S-элементов на его входе превысило некоторую величину θ. Таким образом, если набор соответствующих S-элементов располагается на сенсорном поле в форме буквы «Д», A-элемент активизируется, если достаточное количество рецепторов сообщило о появлении «белого пятна света» в их окрестности, то есть A-элемент будет как бы ассоциирован с наличием/отсутствием буквы «Д» в некоторой области.

Сигналы от возбудившихся A-элементов, в свою очередь, передаются в сумматор R, причём сигнал от i-го ассоциативного элемента передаётся с коэффициентом wi. Этот коэффициент называется весом A—R связи.

Так же как и A-элементы, R-элемент подсчитывает сумму значений входных сигналов, помноженных на веса (линейную форму). R-элемент, а вместе с ним и элементарный перцептрон, выдаёт «1», если линейная форма превышает порог θ, иначе на выходе будет «−1». Математически функцию, реализуемую R-элементом, можно записать так:

 

(1)

 

Обучение элементарного перцептрона состоит в изменении весовых коэффициентов связей A—R. Веса связей S—A (которые могут принимать значения {−1; 0; +1}) и значения порогов A-элементов выбираются случайным образом в самом начале и затем не изменяются. (Описание алгоритма см. ниже.)

После обучения перцептрон готов работать в режиме распознавания или обобщения. В этом режиме перцептрону предъявляются не знакомые перцептрону объекты, и перцептрон должен установить, к какому классу они принадлежат. Работа перцептрона состоит в следующем: при предъявлении объекта возбудившиеся A-элементы передают сигнал R-элементу, равный сумме соответствующих коэффициентов . Если эта сумма положительна, то принимается решение, что данный объект принадлежит к первому классу, а если она отрицательна — то второму.



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2020-03-31 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: