Архитектура сети Хопфилда




Нейронная сеть Хопфилда состоит из N искусственных нейронов. Каждый нейрон системы может принимать одно из двух состояний (что аналогично выходу нейрона с пороговой функцией активации):

 

(2)

 

Благодаря своей биполярной природе нейроны сети Хопфилда иногда называют спинами.

Взаимодействие спинов сети описывается выражением:

 

(3)

 

где элемент матрицы взаимодействий W, которая состоит из весовых коэффициентов связей между нейронами. В эту матрицу в процессе обучения записывается М «образов» — N-мерных бинарных векторов: .

Сеть Хопфилда с тремя нейронами представлена на Рис. 3.

Сеть Хэмминга состоит из двух слоев. Первый и второй слои имеют по m нейронов, где m – число образцов. Нейроны первого слоя имеют по n синапсов, соединенных со входами сети (образующими фиктивный нулевой слой). Нейроны второго слоя связаны между собой ингибиторными (отрицательными обратными) синаптическими связями. Единственный синапс с положительной обратной связью для каждого нейрона соединен с его же аксоном.

 


В сети Хопфилда матрица связей является симметричной = , а диагональные элементы матрицы полагаются равными нулю ( = 0), что исключает эффект воздействия нейрона на самого себя и является необходимым для сети Хопфилда, но не достаточным условием, устойчивости в процессе работы сети. Достаточным является асинхронный режим работы сети. Подобные свойства определяют тесную связь с реальными физическими веществами называемыми спиновыми стеклами.

Обучение сетей Хопфилда

Алгоритм обучения сети Хопфилда имеет существенные отличия в сравнении с такими классическими алгоритмами обучения перцептронов как метод коррекции ошибки или метод обратного распространения ошибки. Отличие заключается в том, что вместо последовательного приближения к нужному состоянию с вычислением ошибок, все коэффициенты матрицы рассчитываются по одной формуле, за один цикл, после чего сеть сразу готова к работе. Вычисление коэффициентов базируется на следующем правиле: для всех запомненных образов матрица связи должна удовлетворять уравнению

 

(4)

 

поскольку именно при этом условии состояния сети будут устойчивы - попав в такое состояние, сеть в нем и останется.

Некоторые авторы относят сеть Хопфилда к обучению без поощрения. Но это неверно, т.к. обучение без поощрения предполагает отсутствие информации о том, к каким классам нужно относить стимулы. Для сети Хопфилда без этой информации нельзя настроить весовые коэффициенты, поэтому здесь можно говорить лишь о том, что такую сеть можно отнести к классу оптимизирующих сетей (фильтров). Отличительной особенностью фильтров является то, что матрица весовых коэффициентов настраивается детерминированным алгоритмом раз и навсегда, и затем весовые коэффициенты больше не изменяются. Это может быть удобно для физического воплощения такого устройства, т.к. на схемотехническом уровне реализовать устройство с переменными весовыми коэффициентами на порядок сложнее.

В сети Хопфилда есть обратные связи и из-за этого нужно решать проблему устойчивости. Веса между нейронами в сети Хопфилда могут рассматриваться в виде матрицы взаимодействий . Было показано, что сеть с обратными связями является устойчивой, если ее матрица симметрична и имеет нули на главной диагонали. Имеется много устойчивых систем, например, все сети прямого распространения, а так же современные рекуррентные сети Джордана и Элмана, для которых не обязательно выполнять условие на симметрию. Но это происходит вследствие того, что на обратные связи наложены другие ограничения. В случае сети Хопфилда условие симметричности является необходимым, но не достаточным, в том смысле, что на достижение устойчивого состояния влияет еще и режим работы сети. Ниже будет показано, что только асинхронный режим работы сети гарантирует достижение устойчивого состояния сети, в синхронном случае возможно бесконечное переключение между двумя разными состояниями (такая ситуация называется динамическим аттрактором, в то время как устойчивое состояние принято называть статическим аттрактором).

Запоминаемые векторы должны иметь бинарный вид. После этого происходит расчет весовых коэффициентов по следующей формуле:

 

(5)

 

где - размерность векторов, – число запоминаемых выходных векторов; – номер запоминаемого выходного вектора; – i-я компонента запоминаемого выходного j-го вектора.

Это выражение может стать более ясным, если заметить, что весовая матрица W может быть найдена вычислением внешнего произведения каждого запоминаемого вектора с самим собой и суммированием матриц, полученных таким образом. Это может быть записано в виде

 

(6)

 

где – i-й запоминаемый вектор-строка.

Расчет этих весовых коэффициентов и называется обучением сети.

Как только веса заданы, сеть может быть использована для получения запомненного выходного вектора по данному входному вектору, который может быть частично неправильным или неполным. Для этого выходам сети сначала придают значения этого начального вектора. Затем сеть последовательно меняет свои состояния согласно формуле:

 

(7)

 

где F — функция активации, и - текущее и следующее состояния сети, до тех пор, пока состояния и не совпадут (или, в случае синхронного режима работы, не совпадут состояния с и одновременно с ). Именно этот процесс называется конвергенцией сети. Полученное устойчивое состояние Xi (статический аттрактор), или, возможно, в синхронном случае пара (динамический аттрактор), является ответом сети на данный входной образ.

Для сети Хэмминга на стадии инициализации весовым коэффициентам первого слоя и порогу активационной функции присваиваются следующие значения:

 

(8)

 

 

Здесь – i-ый элемент k-ого образца.

Весовые коэффициенты тормозящих синапсов во втором слое берут равными некоторой величине . Синапс нейрона, связанный с его же аксоном имеет вес +1.



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2020-03-31 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: