Выявление гетероскедастичности (графический анализ, тест ранговой корреляции Спирмена, тест Голдфелда-Квандта)




Тест ранговой корреляции Спирмена — непараметрический статистический тест, позволяющий проверить гетероскедастичность случайных ошибок регрессионной (эконометрической) модели. Особенность теста заключается в том, что не конкретизируется форма возможной зависимости дисперсии случайных ошибок модели от той или иной переменной.

Процедура теста

С помощью обычного МНК оценивается исходная регрессионная модель:

и определяются остатки регрессии .

Далее ранжируются остатки и переменная , от которой предполагается зависимость дисперсии случайных ошибок, и определяется коэффициент ранговой корреляции Спирмена:

где - разность рангов переменных и .

Доказано, что при справедливости нулевой гипотезы (отсутствие гетероскедастичности, то есть в данном случае - равенство нулю истинного значения коэффициента ранговой корреляции Спирмена ) статистика асимптотически (то есть при достаточно большом ) имеет стандартное нормальное распределение . Соответственно, если значение этой статистики больше критического значения этого распределения (при данном уровне значимости), то гетероскедастичность признается значимой. В противном случае гетероскедастичность незначима (это не исключает возможной зависимости дисперсии ошибок от других переменных, поэтому вообще говоря требуется провести тест для всех "подозрительных" переменных).

Явление гетероскедастичности возникает, как правило, при анализе неоднородных объектов. Например, при построении зависимости прибыли фирмы от размера основного фонда (или каких-либо других факторов) гетероскедастичность вызвана тем, что у больших фирм колебания прибыли будут выше, чем у малых.

МНК при наличии гетероскеда­стичности позволяет получить несмещенные оценки параметров модели, но оценка дисперсии ошибки, и, следовательно, границы доверительных интервалов оценок параметров модели и прогноза зависимой переменной будут неверными, т.к. они вычисляются на основании предположения гомоскедастичности ошибок.

Для проверки на гетероскедастичность существует большое число тестов. Мы остановимся на тсте Голдфельда-Квандта.

Тест Голдфелъда-Квандта применяется в том случае, ко­гда имеются предположения:

1. о прямой зависимости дисперсии σt, ошибки регрессии εt от величины некоторой независимой переменной X в наблюдении t;

2. случайный член εt, распределен нормально и не подвержен автокорреляции.

Алгоритм теста:

1. Упорядочивание n данных в выборке по величине независимой переменной, относительно которой есть подозрение на гетероскедастичность.

2. Исключение с средних наблюдений в этом упорядочении в целях построения двух независимых "частных" регрессий по данным n' = (n-с)/2 в начале выборки и по данным n' = (n - с)/2 в конце выборки

3. Проведение двух независимых "частных" регрессий - первых n' и последних n' наблюдений и построение соответствующих остатков е1 и е2;

4. Вычисление сумм квадратов остатков "частных" регрессий: е1'е1, е2'е2. Если предположение относительно природы гегероскедастичности верно, то дисперсии ошибок регрессии в последних n' наблюдениях будут больше (меньше), чем в первых n' наблюдениях при прямой (обратной) пропорциональной зависимости между σt и Xt и это скажется на сумме квадратов остатков в рассматриваемых частных регрессиях. Поэтому в качестве теста на выявление гетероскедастичности остатков регрессии предлагается использовать статистику F, вид кото­рой определяется предположением зависимости между диспер­сией ошибок регрессии σt и регрессором Xt:

F = е1'е1 / е2'е2- в случае обратной пропорциональности

F = е2'е2 / е1'е1- в случае прямой пропорциональности.

Статистика F имеет распределение Фишера с (n'- k- 1) степенями свободы, где k- число объясняющих переменных в регрессионном уравнении. Если значение статистики превышает критически значение при определенном уровне значимости, то нулевая гипотеза Н0 об отсутствии гетероскедастичности отвергается.

Тест ранговой корреляции Голдфелда-Квандта позволяют обнаружить лишь само наличие гетероскедастичности, но они не дают возможности проследить количественный характер зависимости дисперсий ошибок регрессии от значений регрессоров и, следовательно, не представляют каких-либо способов устранения гетероскедастичности.

При использовании этого теста предполагается, что дисперсии ошибок регрессии представляют собой одну и ту же функцию от наблюдаемых значений регрессоров, т.е.

s2 = fi (xi), (1)

Чаще всего функция f выбирается квадратичной, что соответствует тому, что средняя квадратичная ошибка регрессии зависит от наблюдаемых значений регрессоров приближенно линейно. Гомоскедастичной выборке соответствует случай f = const.

Идея теста Уайта заключается в оценке функции (1) с помощью соответствующего уравнения регрессии для квадратов остатков:

, где ui – случайный член. (2)

Гипотеза H0 об отсутствии гетероскедастичности (условие f = const) принимается в случае не значимости регрессии (2) в целом.

a) Итак, сначала к исходной модели применяется обычный МНК;

b) Находятся остатки ei, регрессии;

c) Осуществляется регрессия квадратов этих остатков ei на все регрессоры x вида (2);

d) Осуществляется регрессия квадратов этих остатков ei на квадраты регрессоров x2;

e) Осуществляется регрессия квадратов этих остатков ei на попарные произведения регрессоров;

Для пунктов c) – e) считается F – статистика, если где p – количество регрессоров, то гипотеза H0 об отсутствии гетероскедастичности отклоняется.

Заметим, что на практике применение теста Уайта с включением и не включением попарных произведений дают, как правило, один и тот же результат.

Привлекательной чертой теста является его универсальность. Однако, если гипотеза H0 об отсутствии гетероскедастичности отклоняется, этот тест не дает указания на функциональную форму гетероскедастичности.

 



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2016-02-16 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: