Пестициды это собирательное название химических средств, предназначенных для защиты растений от болезней, от вредителей и сорняков, а кроме того регуляторов роста и иных веществ, которые используются для борьбы с различными вредными организмами. В сельском хозяйстве применяется довольно широкий ассортимент пестицидов, постоянно совершенствуются методы их внесения.
Токсикологическое значение пестицидов обусловлено тем, что они являются, как правило, биологически активными веществами и могут действовать неблагоприятно не только на вредных насекомых, сорные растения и т. п., но оказывают вредное действие и на полезных насекомых, культурные растения, домашних животных, человека. Побочный эффект широкого использования пестицидов сказывается и в загрязнении внешней среды, и в участии их в создании «токсической» ситуации.
Ранее используемые неорганические химические вещества были почти повсеместно заменены синтетическими органическими соединениями, большинство из которых было специально разработано в соответствии с заданными токсикологическими свойствами. Первоначально широкое использование этих новых пестицидов было встречено с большим энтузиазмом: они обладали быстротой воздействия и высокой эффективностью против различных вредителей. Применение этих веществ позволило полностью предотвратить такие заболевания, как тиф и малярия, и способствовало увеличению производства пищевых продуктов. Однако через многие годы выяснилось, что эффективность пестицидов сопровождалась появлением некоторых отрицательных последствий.
Токсикологическое значение пестицидов обусловлено тем, что они являются, как правило, биологически активными веществами и могут действовать неблагоприятно не только на вредных насекомых, сорные растения и т.п., но оказывают вредное действие и на полезных насекомых, культурные растения, домашних животных, человека. Побочный эффект широкого использования пестицидов сказывается и в загрязнении внешней среды, и в участии их в создании "токсической" ситуации.
|
В зависимости от токсичности все пестициды делятся на 4 группы:
I - высокотоксичные пестициды. ЛД50 составляет до 50 мг/кг живого веса животного;
II - токсичные сильнодействующие пестициды. ЛД50 составляет 50-200 мг/кг;
III - средней токсичности. ЛД50 составляет 200-1000 мг/кг;
IV - малотоксичные. ЛД50 выше 1000 мг/кг.
Эта классификация носит условный характер. При оценке токсичности того или иного вещества, в том числе и пестицида, необходимо, кроме дозы вещества, учитывать его физико-химические свойства, например способность вещества растворяться в жирах, летучесть и др. физико-химические свойства веществ.
С токсичностью тесно связана персистентность (продолжительность сохранения во внешней среде) вещества, его кумулятивные свойства, способность выделяться организмом (например, ДДТ с молоком), метаболизм.
Причинами острых отравлений пестицидами являются небрежное хранение и транспортировка их с нарушением инструкций, неправильное разбрасывание химических средств борьбы с грызунами, несоблюдение сроков обработки пестицидами и т.п.
Со специфическими особенностями химизации сельского (народного) хозяйства связано возникновение хронических интоксикации некоторыми пестицидами.
|
В целях предупреждения отравлений пестицидами врачами-гигиенистами при участии врачей-токсикологов, химиков и других специалистов разрабатываются инструкции по применению, хранению и транспортировке пестицидов; устанавливаются допустимые нормы содержания пестицидов в различных пищевых продуктах; регламентируются сроки обработки пестицидами сельскохозяйственных культур. В профилактике отравлений пестицидами большое значение приобретает разработка методов химико-токсикологического анализа различного рода пищевых продуктов, различных других биологических материалов (моча, кровь и др.) для обнаружения и определения в них пестицидов, определения остаточных количеств пестицидов.
Для распознавания интоксикации фосфорорганическими пестицидами важное значение имеет определение активности холинэстеразы сыворотки крови.
Хлорорганические соединения. Среди большого числа химических соединений, используемых в сельском хозяйстве в качестве пестицидов, наибольшую известность и применение нашли хлорорганические соединения (ХОС).
Хлорорганические пестициды представлены многочисленной группой соединений различной структуры. Известна большая группа хлорорганических инсектицидов, получаемых реакцией диенового синтеза на основе гексахлорциклопентадиена и других циклических углеводородов, хлорпроизводных многоядерных углеводородов (циклопарафинов), терпенов, бензола и др. Большинство ХОС отличается большой стойкостью во внешней среде. По степени токсичности хлорорганические пестициды подразделяются на 4 группы: сильнодействующие - алдрин, хлорпикрин; высокотоксичные – четыреххлористый углерод, дихлорэтан, гептахлор, гексахлоран, гексахлорбутадиен, тиодан, метилилхлорид; среднетоксичные - метоксихлор, кельтан, полихлоркампфен и малотоксичные - эфирсульфонат, тедион.
|
Механизм токсического действия ХОС связывают с изменением ряда ферментных систем, в частности они блокируют SH-группы тканевых белков, нарушают биосинтез белка. Из организма ХОС выделяются в неизмененном виде или разрушаются и окисляются, образуя эпоксидные соединения. При этом продукты метаболизма некоторых хлорорганических пестицидов (алдрив, гептахлор и др.) более токсичны, чем исходные вещества. Большинство ХОС отличаются выраженными кумулятивными свойствами и накапливаются в органах и тканях, богатых жиром и липидами.
Ртутьорганические соединения (РОС) в качестве пестицидов широко используются как протравители семян для защиты посевных материалов от возбудителей болезней (различных видов головни, гоммоза, фузариоза др.) и применяются как фунгициды, инсектициды и бактерициды. В настоящее время нашли применение комплексные ртуть - и хлорорганические препараты, обладающие более широким спектром действия. Одним из наиболее известных ртутьорганических пестицидов является этилмеркурхлорид (гранозан), кроме того, применяются препараты, содержащие в качестве действующего начала фенилмеркурбромид и метилоксиэтилмеркурацетат, используются препараты комплексного действия (меркуран, меркурбензол, меркургексан), являющиеся смесью гранозана с хлорорганическими соединениями.
Отравления РОС могут возникать при поступлении их через дыхательные пути при протравливании и севе семян и в случаях употребления в пищу протравленного зерна. Потенциальную опасность представляют работы, связанные с хранением, выдачей и транспортировкой протравленного зерна.
РОС отличаются высокой токсичностью), выраженными кумулятивными свойствами, откладываясь в печени, стенках желчного пузыря, почках и головном мозге. Концентрации в тысячных, десятитысячных долях мг/дм3 воздуха при длительном поступлении в организм вызывают хронические отравления.
Токсические свойства как органических, так и неорганических пестицидов проявляются за счет ртути. В основе механизма действия РОС лежит способность их блокировать SH-группы клеточных белков в различных тканях и органах (нервная, мышечная, паренхиматозные органы). В патогенезе интоксикаций большую роль играет капилляротоксическое и аллергенное действие ртутьорганических пестицидов.
Важным диагностическим признаком интоксикации РОС является наличие ртути в моче и других биологических средах.
Производные карбаминовой, тиокарбаминовой и дитиокарбаминовой кислот (карбаминовые пестициды). Различные по своей структуре соединения - производные карбаминовых кислот - нашли применение в качестве средств защиты зерновых, овощных и бахчевых, плодово-ягодных и технических культур от вредителей, болезней и сорняков. Большинство препаратов этой группы относятся к гербицидам и инсектицидам (бетанол, дикрезил, ИФК, карбин, севин, хлор ИФК, ронит, тиллам, триаллат, энтам, ялан). Дитиокарбаматы используются как фунгициды, нематоциды, гербициды (карбатион, купрозан и др.).
Карбаматы выгодно отличаются от стойких во внешней среде, высококумулятивиых хлорорганических, высокотоксичных фосфорорганических пестицидов, так как большинство их обладает малой или средней токсичностью, слабо выраженными кумулятивными свойствами и сравнительно небольшой персистентностью во внешней среде.
В механизме токсического действия пестицидов карбаминовых кислот отмечается существенное различие между отдельными препаратами. Так, например, ариловые эфиры алкилкарбаминовых кислот (байгон, дикрезил, севин, алилур, бетанал, ИФК, хлор-ИФК, карбин) обладают антихолинэстеразным действием, в то время как токсическое действие тиокарбаматов (ялан, тиллам, ронит, эптам) проявляется в угнетении окислительных процессов, нарушении обмена нуклеиновых кислот.
Клиническая картина острых интоксикаций производными карбаминовой кислоты (на примере севина) во многом сходна с отравлениями ФОС.
Производные хлорфенилуксусной, хлорфеноксимасляной, пропионовой и бензойной кислот. Препараты этой химической группы применяются в качестве гербицидов. Наибольшее применение получили 2,4-дихлорфеноксиуксусная кислота (2,4-Д), 2-метил-4-хлорфеноуксусная кислота (2М-4Х), их соли и эфиры. Большинство пестицидов этой группы относятся к средне - и малотоксичным веществам, обладают слабовыраженными кумулятивными свойствами. При попадании на кожу и слизистые оболочки вызывают явления местного раздражения.
В механизме токсического действия гербицидов существенную роль играют нарушения процессов фосфорилирования и связанного с ним углеводного обмена, угнетения тканевого дыхания.
При интоксикации производными хлорфенилуксусной кислоты отмечается понижение возбудимости ЦНС, нарушение функции надпочечников и щитовидной железы.
Нитро- и хлорпроизводные фенола. К нитропроизводным фенола относятся динитроортокрезол (ДНОК), нитрафен, каратон, к хлорпроизводным фенола - пентахлорфенолат натрия и акрекс, которые применяются в сельском хозяйстве в качестве инсектицидов, фунгицидов, гербицидов и акарицидов. Большинство из них высокотоксичные для теплокровных животных и человека. При поступлении в организм человека через органы дыхания, кожу или желудочно-кишечный тракт могут вызывать острые и хронические отравления.
Хлорпроизводные фенола более летучи, чем нитропроизводные, и обладают местным раздражающим действием на кожу и слизистые оболочки.
Механизм токсического действия пестицидов этой группы заключается в способности их нарушать обменные процессы в клетке вследствие разобщения процессов окислительного фосфорилирования, что сопровождается усилением основного обмена, повышением температуры и потери массы тела.
При длительном воздействии нитропроизводных фенола (ДНОК) наблюдается окрашивание кожи, волос, конъюнктивы в желтый цвет. В крови и моче определяются различные количества пестицидов и продукты их метаболизма.
Производные симм-триазинов. Производные симм-триазинов (агелон, атразин, карагард, мезаронил, политриазин, прометрин, пропазин, семерон, симазин и др.) применяются как селективные гербициды. Симм-триазины малотоксичны, слабо кумулируют в организме. Являются антиметаболитами пиримидиновых оснований и антагонистами фолиевой кислоты. При длительном контакте с препаратами этой группы у рабочих отмечались головная боль, раздражительность, повышенная утомляемость, явления вегетососудистой дистонии и неврастенического синдрома; представляют опасность вследствие высокой устойчивости во внешней среде.
Производные мочевины и гуанидина. Производные мочевины - гербан, дихлоральмочевина (ДХМ), диурон, дикуран, монурон, ленацид, линурон, фенурон и др., применяются как гербициды, производный гуанидина - карпен известен как фунгицид. Препараты мочевины, как правило, малотоксичны, обладают слабо выраженным кумулятивным действием, не выраженным раздражающим действием на кожу. Исключение составляет крысид, который используется как родентицид и является высокотоксичным препаратом с выраженными кумулятивными свойствами. Карпен относится к среднетоксичным препаратам с умеренно выраженными кумулятивными свойствами и выраженным раздражающим действием на кожу. Механизм токсического действия окончательно не установлен.
Мышьяксодержащие соединения. Мышьяксодержащие пестициды могут применяться в сельском хозяйстве как инсектициды (арсенит и арсенат кальция, арсенит натрия, парижская зелень). Ввиду высокой токсичности и стойкости во внешней среде препараты мышьяка запрещены для применения в сельском хозяйстве, за исключением арсената кальция, который используется в борьбе с хлопковой совкой. Арсенат кальция обладает выраженными кумулятивными раздражающими свойствами, проникает через гематоэнцефалический барьер.
В патогенезе интоксикаций мышьяком важное значение имеет его капилляротоксическое и гемолитическое действие. Соединения мышьяка могут быть выявлены в крови, кале, моче, волосах и костях.
Соединения меди. Медьсодержащие препараты (медный купорос, бордосская жидкость, основная сернокислая медь, купронафт, хлорокись меди) применяются в качестве фунгицидов для обработки садовых культур и протравливания семян. Большинство из них относятся к мало - и среднетоксичным соединениям.
Алкалоидные препараты. К этой группе соединений относятся анабазин-сульфат и никотин-сульфат, которые применяются в качестве инсектицидов и акарицидов в садоводстве и овощеводстве. Оба алкалоида относятся к высокотоксичным препаратам. В механизме токсического действия основную роль играет поражение ганглиев вегетативной нервной системы. После кратковременного возбуждения наступает паралич их функций, В больших дозах проявляется курареподобное действие. В связи с их высокой токсичностью имеют ограниченное применение.
Препараты серы. В сельском хозяйстве в основном применяются порошкообразные препараты серы (сера коллоидная - сулибол тионит, сера молотая), а также известково-серный отвар, сернистый ангидрид - в качестве инсектицидов, акарицидов и фунгицидов.
Сера малотоксична. Высокой токсичностью обладает сернистый ангидрид.
Задача 1. В судебно-химическое отделение поступили объекты (печень с желчным пузырем, почка, желудок, кровь, моча) трупа гр. А. Предполагается отравление таблетками аминазина. Представить формулу вещества, описать физико-химические свойства. Выбрать объекты для анализа и описать изолирование. Предложить схему ХТА.
Аминазин – ксенобиотик. Производный препарат фенотиазинового ряда.
Аминазин – соединение с полициклической основой, содержащей два гетероатома – серы и азота, а так же присоединённый к ароматическому кольцу хлор и третичную аминогруппу, присоединённую по гетероатому азота.
o физико-химические свойства:
Аминазин представляет собой белый или белый с кремоватым оттенком мелкокристаллический порошок. Аминазин гигроскопичен, темнеет под влиянием света, хорошо растворяется в воде, этиловом спирте и хлороформе. Он практически не растворяется в диэтиловом эфире и бензоле. Т пл. – 194 – 198 град. С. Растворы аминазина имеют кислую реакцию (из-за содержания в своём составе кислой молекулы хлороводорода).
Аминазин экстрагируется органическими растворителями из щелочных растворов.
Аминазин хорошо растворим в воде и быстро всасывается из кишечника. При приеме терапевтических доз он почти полностью мета-болизируется в печени. Метаболиты аминазина выводятся с мочой. При приеме чрезмерных доз избыток частично выводится с калом, частично с мочой. Метаболизм и выделение происходят относительно медленно. В крови аминазин обнаруживается в течение 6—24 часов, в зависимости от введенной дозы, состояния печени и почек. При приеме очень больших доз выделение аминазина может растягиваться до 6 дней.
Выделение аминазина из биологического материала (по Ε. Μ. Саломатину). 100 г измельченного биологического материала трижды настаивают по 2 ч с этиловым спиртом, подкисленным 10 %-м спиртовым раствором щавелевой кислоты до рН = 2...3. Соединенные кислые спиртовые вытяжки на водяной бане (при 40 °С) упаривают до густоты сиропа. Примеси, содержащиеся в сиропообразных остатках, осаждают 96 ° этиловым спиртом и фильтруют. Затем, спиртовые вытяжки выпаривают досуха. Сухой остаток растворяют в 100 мл воды, нагретой до 40—60 °С. Жидкость охлаждают и фильтруют. Фильтрат переносят в делительную воронку, доводят 5 %-м раствором щавелевой кислоты до рН = 2...3 и дважды взбалтывают с диэтиловым эфиром (по 50 мл). Водную фазу подщелачивают 50 %-м раствором гидроксида натрия до рН= 13 и взбалтывают с 3—4 новыми порциями диэтилового эфира по 5 мин (объем прибавляемого диэтилового эфира для каждой экстракции должен составлять третью часть объема водной фазы). Объединенные эфирные вытяжки взбалтывают с 0,5 н. раствором серной кислоты (по 10, 10, 10, 5 и 5 мл) в течение 5 мин.
Кислые водные вытяжки соединяют и нагревают 3 мин на водяной бане, нагретой до 50—60 °С, для удаления диэтилового эфира. Освобожденные от диэтилового эфира кислые водные вытяжки используют для обнаружения аминазина.
Выделение аминазина из крови. В колбу вместимостью 100 мл, снабженную обратным холодильником, вносят 5—10 мл крови и прибавляют 30—50 мл этилового спирта, подкисленного 10 %-м спиртовым раствором щавелевой кислоты до рН = 2...3. Колбу нагревают на кипящей водяной бане в течение 10 мин, а затем охлаждают. Спиртовую вытяжку сливают и выпаривают на водяной бане досуха. К сухому остатку прибавляют 50 мл воды, нагретой до 40—60 °С, и взбалтывают. После охлаждения раствора до комнатной температуры его фильтруют, собирая фильтрат в делительную воронку, в которую дважды прибавляют по 20 мл диэтилового эфира, и взбалтывают по 5—10 мин, а затем отделяют эфирный слой. Оставшуюся в делительной воронке кислую водную фазу подщелачивают 50 %-м раствором гидроксида натрия до рН= 13 и взбалтывают с 3—4 порциями диэтилового эфира (по 10 мл). Эфирные вытяжки соединяют и исследуют на наличие аминазина.
Выделение аминазина из мочи. В колбу вносят 50—200 мл мочи, подкисляют 25 %-м раствором серной кислоты до рН = 2...3, нагревают на кипящей водяной бане в течение 5 мин, а затем охлаждают до комнатной температуры. Эту жидкость переносят в делительную воронку и взбалтывают в течение 5—10 мин с двумя новыми порциями диэтилового эфира по 50 мл. Оставшуюся в делительной воронке кислую водную фазу исследуют на наличие аминазина, как указано при описании способа выделения этого препарата из биологического материала.