За пределами человеческих чувств 8 глава




Раз математика — язык физики, недостаток подходящей математики не дает физику выражаться или даже рассуждать на заданную тему. Быть может, сложная незнакомая математика, понадобившаяся Эйнштейну, чтобы сформулировать общую теорию относительности, однажды вдохновила его сказать одной юной школьнице: «Не тревожьтесь о ваших трудностях с математикой — уверяю вас: мои куда больше»[153]. Или же, как говорил Галилей, «книга [природы] не может быть понята, если сначала не научиться понимать язык и читать буквы, которыми она написана. Она написана на языке математики, а знаки ее — треугольники, окружности и другие геометрические фигуры, без которых понять хоть одно слово — выше человеческих сил; без этого — лишь бродить в темном лабиринте»[154].

Дабы озарить светом этот темный лабиринт, Орем изобрел разновидность диаграмм, предназначенных для представления физики мёртонского правила. И хотя сам он понимал свои диаграммы не так, как мы в наши дни, можно считать их первым геометрическим представлением физики движения — а значит, и первым графиком.

Я всегда считал странным, что люди знают изобретателя математического анализа, хотя мало кто им пользуется, но при этом мало кто знает изобретателя графиков, однако ими пользуются все. Думаю, всё здесь оттого, что в наше время понятие графика представляется очевидным. Но в средние века мысль о том, что количества можно отображать линиями и фигурами в пространстве, была поразительно свежей и революционной, а может, и чуточку чокнутой.

Покажу вам, насколько трудно добиться даже самого простого изменения в образе человеческой мысли, — вспомним историю еще одного чокнутого изобретения, решительно нематематического: самоклеящиеся бумажки «Пост-ит», те листочки бумаги с клейкой полоской многоразового использования с одной стороны, которые можно легко приделывать к разным предметам. «Пост-ит» изобрел в 1974 году Арт Фрай, инженер-химик из компании «3М». Но предположим, что их тогда не изобрели, и вот прихожу я к вам, к инвестору, сегодня с этой затеей и бумажной пачечкой-прототипом. Вы тут же поймете, что это золотая жила, и ринетесь деньги вкладывать, да?

Как ни странно, а большинство-то людей, вероятно, не ринется: Фрай представил свою задумку маркетологам в «3М», компании, известной и клеящими продуктами, и новациями, и они как-то не вдохновились и решили, что продавать этот продукт будет непросто, потому что ему придется конкурировать по ценам с бумагой для заметок, которую новинка должна была вытеснить. Чего ж они не бросились к сокровищу, которое Фрай им предложил?[155]Потому что в до-«Пост-ит»-овую эпоху сама мысль, что кому-то может понадобиться лепить клочок бумаги со слабой клеевой полоской на вещи, была за пределами человеческого воображения. И потому Артуру Фраю труднее было изменить способ человеческого мышления, нежели изобрести новый продукт. Уж если с самоклеящимися бумажками пришлось принять неравный бой, можно лишь вообразить, до чего трудно пришлось тем, кто занимался вещами куда значимее.

К счастью, Орему для доказательства самоклеящиеся бумажки не требовались. Вот как он рассуждал. Для начала разметим время вдоль горизонтальной оси, а скорость — вдоль вертикальной. Теперь предположим, что некое тело начинает движение во временно й точке «нуль» и сколько-то времени движется с постоянной скоростью. Это движение представим в виде горизонтальной прямой. Если заштриховать площадь под этой прямой, получится прямоугольник. Постоянное ускорение же выглядит как прямая под некоторым углом, потому что со временем скорость меняется. Если закрасить область под этой прямой, получится треугольник.

 

График, иллюстрирующий мёртонское правило

 

Области под этими линиями — закрашенные участки — представляют скорость, умноженную на время, а это есть расстояние, пройденное телом. Рассуждая вот так и зная, как рассчитать площади прямоугольника и треугольника, легко показать, что мёртонское правило верно.

Орем не почитаем так, как до́лжно, потому, что издал он из своих работ немногое. Вдобавок, хоть я и объяснил, как мы интерпретировали бы его работу в наши дни, понятийный аппарат, который он применял, был и близко не таким подробным и количественным, какой применил я, и принципиально отличался от нашего современного представления о связи математики и физических количеств. Это свежее понимание возникнет из череды новых представлений о пространстве, времени, скорости и ускорении, и они — важнейший вклад великого Галилео Галилея (1564—1642).

 

* * *

 

Хоть средневековые ученые, трудившиеся в университетах в XIII—XIV веках, и продвинулись в развитии традиции рационального и эмпирического научного метода, великий взрыв европейской науки произошел не сразу. Общество и культуру Европы Позднего Средневековья сначала преобразили изобретатели и инженеры — то был период первых ласточек Возрождения, которое длилось, грубо говоря, с XIV по XVII век.

Эти новаторы раннего Возрождения создали первую цивилизацию, не влекомую преимущественно силой мышц. Водяные и ветряные колеса, новые виды механических сочленений и другие приспособления разрабатывались или совершенствовались и встраивались в деревенскую жизнь. Они питали энергией лесопилки, мукомольни и множество хитроумных инструментов. Техническая новизна их[156]с теоретической наукой была связана слабо, но она создала предпосылки для дальнейшего развития[157], принеся новые материальные богатства, которые помогли поддержать расцвет образования и грамотности, а также позволили осознать, что понимание природы может облегчить нам жизнь.

Предпринимательский дух раннего Возрождения породил одно техническое нововведение, прямо и мощно повлиявшее на дальнейшее развитие науки, да и общества в целом: печатный станок. Хотя китайцы придумали подвижной шрифт на несколько веков раньше — около 1040 года, — он был относительно непрактичен, поскольку в китайском применялись пиктограммы, а это означало, что литер должно быть много тысяч. В Европе же появление примерно в 1450 годах механических печатных станков с подвижными литерами изменило все. В 1483 году, к примеру, за подготовку набора книги печатники из Риполи просили втрое больше, чем писец — за переписывание одной книги. Однако в Риполи с готового набора могли произвести тысячу копий или даже больше, а писец — лишь одну. В результате всего за несколько десятилетий книг было напечатано больше, чем писцы в Европе смогли произвести за все предыдущие века, вместе взятые.

Печатный станок укрепил возникший средний класс и совершил переворот в обмене мыслями и сведениями по всей Европе. Знание и сведения внезапно сделались доступны куда большему числу граждан. В первые же несколько лет[158]были изданы первые математические тексты, а к 1600 году — почти тысяча. К тому же пошла новая волна восстановления античных текстов. Что не менее важно, люди со свежими замыслами внезапно обрели куда более широкую аудиторию, а те, кто, подобно ученым, жил изучением и развитием мыслей других людей, вскоре получил гораздо более прямой доступ к работам коллег.

Благодаря этим переменам в европейском обществе правящий класс оказался менее жестко ограничен и однороден, чем в исламском мире, Китае или Индии. Эти общества сделались неподатливыми и сосредоточились на консервативном мировосприятии. Европейскую элиту же, меж тем, мотало во все стороны из-за конкурирующих интересов города и деревни, церкви и государства, Папы и императоров, равно как и из-за требований новой светской интеллигенции и растущих потребительских желаний. Европейское общество развивалось[159], искусства и науки получали все больше возможностей меняться — и менялись, и в результате укреплялся и практический интерес к природе.

Интерес к природе сделался душой Возрождения — и в искусстве, и в науке. Само название эпохи означало новые начинания и в физическом существовании, и в культуре: Возрождение зародилось в Италии сразу вслед за эпидемией Черной смерти, унесшей жизни от трети до половины населения Европы, после чего движение ее замедлилось, и до северной Европы она дошла лишь в XVI веке.

В искусстве скульпторы Возрождения исследовали анатомию, а художники — геометрию, и те, и другие увлеклись созданием более точных отображений действительности на основе пристального наблюдения. Человеческие фигуры теперь изображали в естественном окружении и с анатомической точностью, а трехмерность изображениям придавали с помощью света, тени и линейной перспективы. Персонажи художников являли теперь реалистичные чувства, лица их лишились плоского, неземного качества, свойственного прежнему средневековому искусству. Музыканты Возрождения изучали акустику, архитекторы вглядывались в гармонию пропорций зданий. А ученые, увлеченные натурфилософией, которую мы ныне зовем наукой, по-новому начали относиться к сбору данных и извлечению из них выводов, отвлекшись наконец от применения чистого логического анализа, искаженного желанием подтвердить те или иные религиозные взгляды.

Леонардо да Винчи (1452—1519), вероятно, лучше всех воплощает научные и гуманистические идеалы того времени, не распознававшего четкой границы между наукой и искусствами. Ученый, инженер и изобретатель, он был еще и художником, скульптором, архитектором и музыкантом. Во всех своих начинаниях Леонардо пытался прозреть человеческий и природный миры через пристальное наблюдение. Его записки и исследования в науке и инженерном деле занимают более десяти тысяч страниц, как художник он не довольствовался простым наблюдением за позирующими моделями — он изучал анатомию и препарировал трупы. Ученые до него рассматривали природу в понятиях общих качественных черт, Леонардо же и его современники прилагали колоссальные усилия, чтобы увидеть мельчайшие точки природного промысла — и обращали меньше внимания на авторитет и Аристотеля, и Церкви.

Вот в таком интеллектуальном климате ближе к концу Возрождения и родился в 1564 году в Пизе Галилей, всего за два месяца до появления на свет другого титана — Уильяма Шекспира. Галилей был первым из семерых детей Винченцо Галилея, известного лютниста и теоретика музыки.

Винченцо происходил из почтенной семьи[160]— не в том смысле, в каком мы их себе представляем сейчас: люди, которые ездят на лисью охоту и пьют чай каждый день после обеда, а из тех, кто именем своим добивается получения заказа. Винченцо, может, хотел бы себе почтенности первого рода — он любил лютню и играл на ней, где только мог: гуляя по городу, верхом, стоя у окна, лежа в постели, но практика эта приносила ему в виде звонкой монеты немного.

Надеясь направить сына по пути благополучия, Винченцо отправил юного Галилео в Университет Пизы, учиться медицине. Однако юношу больше медицины интересовала математика, и он стал брать частные уроки по трудам Евклида и Архимеда — и даже Аристотеля. Много лет спустя он говорил друзьям, что лучше бы забросил университет и взялся за рисование и живопись. Винченцо же подталкивал его к более практическим занятиям, в соответствии с вековой отеческой теорией, что стоит пойти на некоторые компромиссы, но избежать жизни, в которой «ужин» означает «суп с конопляными семечками и говяжьи потроха».

Винченцо, узнав, что Галилео увлекся математикой, а не медициной, должно быть, счел, что сын выбрал специальность «жизнь на наследство», каким бы чахлым то ни было. Но это все едва ли имело значение. Галилео не доучился ни до чего — ни в медицине, ни в математике, ни в чем бы то ни было еще. Он бросил занятия и вступил на жизненный путь, на котором, несомненно, его ожидало безденежье, а частенько — и долги.

Оставив учебу, Галилей поначалу кормился за счет частных уроков математики. Как-то раз он прослышал о некой незначительной вакансии в Университете Болоньи. Хотя ему было двадцать три, он все равно предложил на это место себя, применив свежий подход к округлению — написал, что ему «около двадцати шести». Университет, видимо, искал сотрудника «около» чего-нибудь постарше и нанял тридцатидвухлетнего человека, еще и, вообще-то, доучившегося по специальности. И все-таки, даже через несколько веков, любого, кому отказали в найме на ученую должность, должно утешать: этот опыт у вас с Галилеем общий.

 

Галилео Галилей, с картины фламандского художника Юстуса Сустерманса, 1636 год

 

Двумя годами позже Галилей все же стал преподавателем в Пизе. Там он учил своему любимому Евклиду, а также преподавал курс по астрологии, нацеленный помочь студентам-медикам определять, когда пора делать пациенту кровопускание. Да, человек, столько сделавший для научной революции, наставлял начинающих врачей, как влияет положение Водолея на места постановки пиявок. Ныне астрология лишена всякого доверия, однако в прежние времена, пока мы еще мало что знали о законах природы, представление о том, что небесные тела влияют на наши жизни на Земле, казалось вполне разумным. В конце концов, правда же, что Солнце, да и Луна, как давно было известно, неисповедимо связаны с приливами и отливами.

Галилей составлял астрологические прогнозы и из личного интереса, и ради заработка, и брал со своих студентов по двенадцать скуди за прогноз. Если получалось пять прогнозов в год, ему удавалось удвоить свою учительскую ставку в шестьдесят скуди — ее едва хватало на жизнь. А еще его тянуло к азартным играм, а в ту пору, когда никто почти ничего не знал о математике вероятностей, Галилей стал не только первым, кто рассчитывал вероятность выигрыша, он еще и блефовал неплохо.

Ближе к тридцати, высокий, статный, светлокожий и слегка рыжеволосый Галилей людям нравился. Но его преподавательской практике в Пизе не суждено было длиться долго. Хоть в целом начальство он и чтил, но позволял себе саркастические высказывания и мог быть язвителен и к своими интеллектуальным противникам, и к университетским управленцам, если те гладили его против шерсти. В Пизе его однажды «погладили» так, что Галилей вышел из себя: университет упрямо настаивал, чтобы профессора носили академические облачения не только когда преподают, но и если просто перемещаются по городу.

Галилей, любивший писать стихи, в ответ сочинил стихотворение, посвященное университетскому начальству. Предмет сочинения — одежда, Галилей выступил против нее. По его мнению, это обман. К примеру, невеста могла бы взглянуть на своего жениха, будь он без одежды, и «Увидать, не мал ли он, иль французским хворям сдался, тот, кто так осведомлен, хошь бросай, а хошь — хватайся»[161]. Таким стихотворением парижан не умилишь. В Пизе оно тоже не понравилось, и юный Галилей опять оказался на рынке труда.

Как выяснилось, все к лучшему. Галилей вскоре получил приглашение работать близ Венеции, в Падуе, с начальным годовым заработком в 180 скуди, втрое выше его первой ставки, и позднее описывал пребывание там как лучшие восемнадцать лет своей жизни.

Ко времени переезда в Падую Галилей уже успел разочароваться в Аристотелевой физике[162]. По Аристотелю, наука состояла в наблюдении и теоретизировании. Для Галилея в этом не доставало ключевого шага — экспериментов, и в руках Галилея экспериментальная физика развилась в той же мере, в какой и теоретическая. Ученые веками ставили эксперименты, однако те в основном были направлены на иллюстрирование уже принятых взглядов. Ныне же, напротив, ученые проводят опыты ради строгой проверки своих взглядов. Эксперименты Галилея — нечто среднее. То были исследования — больше, чем просто иллюстрации, но пока все же не строгая проверка выводов.

У подхода Галилея к эксперименту есть две важнейших стороны. Во-первых, получая удивительный для себя результат[163], он его не отвергал — он сомневался в правильности своих рассуждений. Во-вторых, его эксперименты были количественными, что вполне революционно для его времени.

Эксперименты Галилея очень походили на те, которые ныне показывают в средней школе на уроках физики, хотя, конечно, его лаборатория отличалась от современной школьной: в ней не было электричества, газа, воды и прикольного оборудования — а под «прикольным оборудованием» я подразумеваю, к примеру, часы. И потому Галилею приходилось быть Макгайвером[164]XVI века — создавать сложные приборы из того, что в эпоху Возрождения могло заменить скотч и вантуз. К примеру, чтобы сделать себе секундомер, Галилей провертел дырочку в дне здоровенного ведра. Когда требовалось засечь протяженность того или иного события, он наливал в эту емкость воду, собирал вытекшее и взвешивал его — масса воды была пропорциональна продолжительности события.

Галилей применял эти «водяные часы», пытаясь разобраться с противоречивыми вопросами свободного падения — процесса, при котором предмет падает на землю под воздействием силы тяжести. Для Аристотеля свободное падение — разновидность естественного движения, которое подчиняется определенным ключевым правилам, например: «Если половинный вес проходит расстояние за данное время, двойной вес [то есть целый] пройдет это же расстояние за половину времени». Иными словами, предметы падают с постоянной скоростью, пропорциональной их весу.

Если вдуматься, это вполне соответствует здравому смыслу: камень падает быстрее древесного листка. И поскольку измерительных и записывающих инструментов под рукой еще не было, а об ускорении знали мало, Аристотелево описание свободного падения должно было казаться разумным. Но если вдуматься, оно же и противоречит здравому смыслу. Как отмечал астроном-иезуит Джованни Риччоли, даже мифологический орел, убивший Эсхила, уронив ему на голову черепаху, интуитивно понимал, что предмет, сброшенный кому-нибудь на голову, нанесет больший урон, если сбросить его откуда-нибудь повыше[165], а это значит, что предметы, падая, ускоряются. Ввиду всех этих рассуждений успела сложиться давняя традиция думать о свободном падении и так, и эдак, и различные ученые в разные века выражали свой скептицизм относительно Аристотелевой теории.

Галилей знал о высказанной критике и хотел провести личное исследование этого явления. Понимал он и то, что его водяные часы недостаточно точны для экспериментов с падающими предметами, а потому требовалось придумать процесс, протекавший медленнее, но все равно по тем же физическим принципам. Он решил измерить время, нужное гладко отполированным бронзовым шарам, чтобы скатиться по гладким мосткам, наклоненными под разными углами.

Изучать свободное падение, замеряя время качения шаров по пандусам, — все равно что покупать наряд, исходя из того, как он смотрится в интернете: нельзя исключать, что на вас он будет смотреться не так, как на роскошной модели. Однако, вопреки опасностям, подобный ход мысли есть суть мышления современных физиков. Искусство планирования хорошего эксперимента состоит преимущественно в понимании, какие стороны задачи важно сохранить, а на какие не обращать внимания — и как потом толковать полученные результаты.

В случае свободного падения гений Галилея должен был измыслить эксперимент с катящимися шарами, не позабыв о двух критериях. Первый: требовалось, чтобы процесс происходил медленнее — тогда можно успеть все измерить; второй, не менее важный: минимизировать воздействие сопротивления воздуха и трения. Хотя трение и сопротивление воздуха — часть нашего повседневного опыта, Галилей чуял, что они смущают простоту фундаментальных законов, правящих природой. Камни в естественных условиях, может, и падают быстрее перьев, но законы, стоящие за любым падением, предполагал Галилей, постановляют, что в вакууме и камень, и перышко будут падать с одной и той же скоростью. Нужно «освободиться от этих трудностей, — писал он, — и, открыв и явив эти теоремы для случая, когда отсутствует сопротивление, […] применять их [к реальному миру]… с теми ограничениями, какие покажет опыт»[166].

Для небольших углов наклона в эксперименте Галилея все происходило довольно медленно, и данные добывались без особых усилий. Он заметил, что при малых углах расстояние, пройденное шаром, всегда пропорционально квадрату времени в пути. Можно математически доказать: это значит, что шар набирает скорость равномерно, то есть равномерно ускоряется. Более того, Галилей отметил и то, что скорость падения шара не зависит от его массы.

Поразительно было другое: это утверждение оставалось верным и когда пандус наклоняли под большими углами; каким бы ни был угол наклона, расстояние, пройденное шаром, не зависело от массы шара и было пропорционально квадрату времени, потребного для качения. Если это верно для наклона в сорок, пятьдесят, шестьдесят или даже семьдесят градусов, чего б и не девяносто? И вот тут-то Галилей приводит очень современное рассуждение: он говорит, что его наблюдения за шаром, скатывающимся по наклонной плоскости, должны быть верны и для свободного падения, которое можно рассматривать как «предельный случай» наклона плоскости под прямым углом. Иными словами, он рассудил гипотетически, что, если приподнять плоскость вплоть до вертикального положения, и шар при этом фактически падал, а не катился, скорость он все равно будет набирать равномерно, а это означает, что усмотренная им для случая наклонных плоскостей закономерность распространяется и на свободное падение.

Так Галилей заместил Аристотелев закон свободного падения своим собственным. Аристотель говорил, что все тела падают со скоростью, пропорциональной их весу, но Галилей, постулируя идеальный мир, в котором фундаментальные законы природы являют себя наблюдателю, пришел к другому выводу: в отсутствие сопротивления среды — к примеру, воздуха, — все тела падают с одним и тем же постоянным ускорением.

 

* * *

 

Помимо склонности к математике Галилей тяготел и к абстрактному мышлению. И до того оно было у него развито, что ученый временами любил обдумывать что-нибудь целиком и полностью умозрительно. Не-ученые называют это фантазиями, ученые — мысленными экспериментами, по крайней мере — когда говорят о физике. Хорошо в мысленных экспериментах то, что их можно проводить целиком у себя в голове и не возиться со сборкой работающих приборов, но с их помощью проверять логические следствия тех или иных соображений. Таким манером, потопив Аристотелеву теорию свободного падения посредством практических экспериментов с наклонными плоскостями, Галилей, применив мысленный эксперимент, присоединился к обсуждению одного из предметов Аристотелевой физики, подвергшегося острейшей критике, а именно — движения снарядов.

Что движет снарядом после того, как к нему приложена начальная сила? Аристотель предположил, что его толкают частицы воздуха, устремляющиеся вслед снаряду, но даже сам он к своему объяснению относился критически, и мы в этом уже убедились.

Галилей взялся разбираться с этой темой, вообразив корабль в море: в трюме моряки играют в салки, летают бабочки, в склянке на столе плавают рыбки, из бутылки капает вода. Он «заметил», что все это происходит одинаково независимо от того, движется корабль равномерно или же покоится. Галилей заключил, что, поскольку все на корабле движется вместе с ним, движение корабля должно «запечатлеваться» на предметах у него на борту, и когда корабль начинает двигаться, его движение становится чем-то вроде подложки для всего, что на нем находится. Может ли движение снаряда быть на нем «запечатлено»? Может ли это быть силой, поддерживающей полет пушечного ядра?

Размышления Галилея привели его к глубочайшему выводу — и к еще одному разрыву с Аристотелевой физикой. Отвергнув утверждение Аристотеля о том, что снаряду для движения нужна причина — сила, Галилей заявил, что все тела, находящиеся в равномерном движении, обыкновенно продолжают двигаться равномерно и дальше, в точности как тела в покое покоятся и далее.

Под «равномерным» Галилей понимал движение по прямой и с постоянной скоростью. Положение «покоя» — попросту пример равномерного движения, в котором скорость равна нулю. Наблюдение Галилея стало называться законом инерции. Ньютон позднее видоизменил его и сделал первым законом движения.

Через несколько страниц после формулировки закона Ньютон добавляет, что открыл его Галилей — редкий случай, когда Ньютон вообще отдавал кому-нибудь должное[167].

На основании рассказанного мной о Галилее отцу, он, любивший сравнивать любого значимого человека с какой-нибудь фигурой в иудейской истории, назвал Галилея Моисеем науки. Он сказал, это потому, что Галилей вывел науку из Аристотелевой пустыни к земле обетованной. Сравнение это тем более действительно вот из-за чего: подобно Моисею, сам Галилей до обетованной земли не добрался — не выделил гравитацию как силу, не смог описать ее математически, чего пришлось ждать до Ньютона, и по-прежнему цеплялся за некоторые Аристотелевы взгляды. К примеру, Галилей верил в некое «естественное движение», которое не равномерно, однако не требует силы для того, чтобы начаться: движение вокруг центра Земли. Галилей, судя по всему, думал, что это разновидность естественного движения, позволяющего телам никуда не деваться с вращающейся планеты.

Чтобы родилась настоящая наука движения, необходимо было отринуть и эти пережитки Аристотелевой системы взглядов. По этим причинам один историк писал о Галилеевых представлениях о природе как о «невозможной амальгаме несовместимых элементов, порожденной взаимоисключающими мировоззрениями, меж которых он оказался»[168].

 

* * *

 

Вклад Галилея в физику подлинно революционен. Однако знаменит он в наши дни в основном конфликтом с Католической церковью, возникшим из-за его утверждения, противоположного взглядам Аристотеля (и Птолемея), что Земля — не центр Вселенной, а лишь обычная планета, вращающаяся, как и все остальные, вокруг Солнца. Представление о гелиоцентрической Вселенной существовало со времен Аристарха, с III века до н. э., но за современное видение можно благодарить Коперника (1473—1543).

Коперник — довольно противоречивый революционер науки, не ставивший цели критиковать метафизику своего времени; он просто разбирался с древнегреческой астрономией: ему не давало покоя, что для того, чтобы придать геоцентрической модели Вселенной[169]устойчивость, необходимо было водить множество специальных геометрических построений. Его модель, напротив, была куда точнее и проще, даже изящнее. В согласии с духом Возрождения он ценил не только научную достоверность, но и эстетичность замысла. «Думаю, в это проще верить, — писал он, — нежели вносить путаницу множеством Сфер, какие нужны, чтобы Земля оставалась в средине»[170].

Коперник сначала, в 1514 году, описал свою модель только для себя, а потом не одно десятилетие производил астрономические наблюдения в поддержку этой модели. Но, подобно Дарвину столетия спустя, он излагал свои представления в кругу близких доверенных друзей, боясь осуждения народа и Церкви. И все же Коперник ощущал опасность, а также понимал, что при должных политических маневрах реакция Церкви может быть смягчена, и когда Коперник наконец все же опубликовал свою работу, он посвятил ее Папе, с пространным объяснением, почему его взгляды — не ересь.

В конце концов труд Коперника так и остался достоянием ученых кругов: он не был опубликован вплоть до 1543 года, а к тому времени Коперник уже лежал на смертном одре — говорят, свою напечатанную книгу он увидел лишь в день смерти. Как ни удивительно, даже после издания книга ни на что не повлияла, пока позднейшие ученые, в том числе Галилей, не приняли его взглядов и не начали говорить о них.

Хотя Галилей не сам придумал, что Земля — не центр Вселенной, он привнес нечто не менее важное: применив телескоп (который собрал сам, на основе гораздо более простой модели, изобретенной незадолго до этого), он обнаружил поразительные и убедительные доказательства этой модели.

Все началось случайно. В 1597 году Галилей писал и давал лекции в Падуе о Птолемеевой системе, почти никак не показывая, что сомневается в ее состоятельности[171]. Меж тем, примерно тогда же в Голландии произошел случай, напоминающий нам о том, как важно оказаться в нужном месте (Европа) в нужное время (в частности, всего через несколько десятилетий после Коперника). Случай, который в конце концов заставил Галилея сменить точку зрения, произошел с двумя детьми, которые играли в лавке никому не известного изготовителя очков по имени Ханс Липперсгей [Липперсхэй], — они приложили друг к другу две линзы и посмотрели сквозь них на флюгер на шпиле далекой городской церквушки. Он оказался увеличенным. Галилей позднее записал, что Липперсгей глянул сквозь эти две линзы, «одну выпуклую, другую вогнутую… и увидел неожиданное; вот и [изобрел] инструмент»[172]. Он создал подзорную трубу.

Мы склонны представлять себе развитие науки как череду открытий, каждое ведет к следующему путем усилий отдельных интеллектуальных исполинов, располагающих ясным и необычным видением. Но видение великих открытий в интеллектуальной истории куда чаще замутнено, чем ясно, а своими достижениями они обязаны в большей мере друзьям и коллегам — и удаче, — нежели выходит, если судить по легендам и по признаниям самих первооткрывателей. В данном случае подзорная труба Липперсгея давала всего двух— или трехкратное увеличение, и когда Галилей несколько лет спустя, в 1609 году, впервые о ней услышал, его это не очень впечатлило. Интересно ему стало лишь потому, что его друг Паоло Сарпи, описанный историком Дж. Л. Хейлброном как «непримиримо анти-иезуитский монах-энциклопедист», усмотрел в этом приспособлении потенциал — он подумал, что, если это изобретение усовершенствовать, его можно отлично применить для военных нужд Венеции, не укрепленного стенами города, чье выживание зависело от своевременного обнаружения угрозы вражеского нападения.



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2016-08-20 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: