Элементы орбит электрона в атоме водорода




Steady state, k Orbit type and number Orbital count, n Velocity in a pericenter Vn×106 , m×s Velocity in an apocenter Va·106, m×s Pericentral radius, rп×10-10, m Apocentral radius, rа×10-10 , m
I Round   2,186500611 2,186500611 0,529177249 0,529177249
II 1st round 2nd elliptical   1,093228498 4,080011431 1,093228498 0,292931642 2,116751219 0,283589719 2,116751219 3,949885269
III 1st round 2nd elliptical 3rd elliptical   0,728816306 1,908068681 4,247877841 0,728816306 0,278383469 0,125045849 4,762707838 1,212793217 0,272382215 4,762707838 8,312608374 9,252977104
IV 1st round 2nd elliptical 3rd elliptical 4th elliptical   0,546611523 1,210882086 2,039985368 4,303484883 0,546611523 0,246749450 0,146464359 0,069429114 8,467047101 2,866620271 1,134367330 0,268862656 8,467047101 14,06746452 15,79969878 16,66514681

Table 1 (continued)

Steady state, K Orbit type and number Charge count, z' Length of a large axis ×10-10, m Length of a small axis ×10-10, m Full energy, E×10-19, Joules Orbital period, ×10-16, s
I Round 1,000026596 1,058354498 1,058354498 21,78687544 1,520657574
II 1st round 2nd elliptical 1,000006648 1,000013297 4,233502438 4,233474988 4,233502438 2,116737494 5,446501565 5,446573992 12,16574593 12,16558416
III 1st round 2nd elliptical 3rd elliptical 1,000002954 1,000004432 1,000008865 9,525415676 9,525401591 9,525359319 9,525415676 6,350267727 3,175119773 2,420649477 2,420656632 2,420678093 41,05969589 41,05957452 41,05921049
IV 1st round 2nd elliptical 3rd elliptical 4th elliptical 1,000001662 1,000002216 1,000003324 1,000006648 16,93409420 16,93408479 16,93406611 16,93400946 16,93409420 12,70056359 8,467033055 4,233502366 1,361611812 1,361613322 1,361616339 1,361625391 97,32693805 97,32683021 97,32661453 97,32596751

Based on calculations conducted above it is possible to draw the following conclusions. Each orbit is characterized by only two quantum numbers which are k and n. In a hydrogen atom, charge count z is equal to 1 only for the electron which is static to the kernel. For the electrons which are moving on the orbit charge count z is more the 1. For the electrons which are in the same steady state but moving on the orbits with different values of n, lengths of a large axis are different so are the values of full energy. In a hydrogen atom, the parameters of the first Bohr orbit have been experimentally calculated at a very high precision. The parameters of the rest possible orbits can be calculated using equations above at a very high precision either.

In a nonexited atom of the helium, both electrons are in the first steady state and move on the round orbits. The orbital period of the external electron is twice more that the orbital period of the internal electron. Energy consumption to remove an electron from a nonexited helium atom is E ­ = 198310,76 Sn-1 = 39.3933902·10-19 Watt-Second. In this case, the equation (8) takes the following form:

.

Having calculated via this equation the values ze2 = 1.3914422, it is possible to find z'1 = 1.9677965 from ratio. Now it is possible to calculate the parameters of the orbits of both electrons in the first steady state with the equations (9-14).

Table 2

Orbits of Electrons In The Helium Atom

Steady state of second electron Orbit type and number Charge count
     
  Round 1,9677965 1,3914422  
  1st round 1,9971808 1,2043454  
2nd round 1,9991896 1,0882210  
3rd round 2,0001251 1,0328602  
4th round 2,0001274 1,0328613  
5th round 1,9996570 0,9998285  
  1st round 1,9996874 1,1204559  
2nd round 1,9999251 1,0551392  
3rd round 1,9998483 1,0289134  
4th round 1,9998489 1,0289138  
5th round 1,9997306 1,0092539  
6th round 1,9997382 1,0092577  
7th round 2,0000089 1,0000045  

 

Table 2 shows similarly calculated count charges of an electron in the helium atom for the cases when the external electron is in the one of three steady states.

Evidently from table 2, the external electron in the helium atom can have only one round orbit in the first steady state, 4 round and 1 elliptical in the second steady state, and 5 round and 2 elliptical orbits in the third steady state. The first orbit of the electron in the second steady state is very stable. Electron’s transfer from this orbit to the orbit in the first steady state is possible only when the atoms collide [15]. Usually, the helium consists of two kinds of atoms. In some atoms, the external electron is moving on the orbit of the first steady state, and on the first orbit of the second steady state in the others. The first atoms are the ones of the parahelium, and the second atoms are the ones of the orthohelium.

For the ions with the equal number of the electrons but different kernel charges, the following equity is valid:

where: En is the ionization potential of the hydrogen atom, En+1, En, and En-1 are the ionization potentials of the ions of three elements located next to one another, n is the number of the element, k is the number of the steady state of the external elements in the ions. By this formula, the ionization potentials and the values for k have been calculated for 24 elements [12]. There is no principal difficulties for calculating the ionization potentials and the parameters of the electron’s orbits for all elements in the Periodical Table.

Table 3

Atoms’ Ionization Potentials

Number of Electron Fluorine Neon Natrium
Ionization Energy E, eV Ionization Energy E, eV Ionization Energy E, eV
Calculation Reference Calculation Reference Calculation Reference
  1102,0 1101,8 1360,5 1360,2 1646,2 1646,4
  953,43 953,5 1195,0 1195,4 1463,7 1464,7
  185,14 185,14 239,0 239,1 299,86 299,7
  157,06 157,11 207,05 207,2 263,83 264,2
  114,21 114,21 157,91 157,91 208,41 208,44
  87,141 87,23 126,15 126,4 172,36 172,38
  62,710 62,646 97,118 97,16 138,33 138,6
  34,971 34,98 63,456 63,5 98,916 98,88
  17,423 17,418 40,964 41,07 71,639 71,8
  - - 21,565 21,559 47,287 47,29
  - - - - 5,1391 5,138

 

Table 3 shows the calculated and the referenced values of the ionization potentials of the fluorine, the neon, and the natruim atoms. Evidently, the calculated values of the ionization potentials conform well to the reference values.

Chemical and a set of physical properties of the elements are stipulated by the energy of binding external electrons with the atoms. The binding energy, and, therefore, the properties are periodically dependent on the number in the Periodical Table. While comparing the ionization potentials of all atoms [13] with the different kernel charges but with the equal number of the electrons, 12 periods shown in table 5 may be neatly discerned for known elements. Table also shows the 13th period for the elements that possibly exist in the Universe in conditions different from ones in the Solar System.

Table 4

Periodical Law

Period Element’s Number In The Period
                             
I H He                        
II Li Be B C N O F Ne            
III Na Mg Al Si P S Cl Ar            
IV K Ca Sc Ti V Cr Mn Fe Co Ni        
V Cu Zn Ga Ge As Se Br Kr            
VI Rb Sr Y Zr Nb Mo Tc Ru Rh Pb        
VII Ag Cd Jn Sn Sb Te J Xe            
VII Cs Ba La Ce Pr Nd Pm Sm Eu Gb To Dy Ho Er
IC Tm Yb Lu Hf Ta W Re Os Jr Pt        
C Au Hg Tl Pb Bi Po At Rn            
CI Fr Ra Ac Th Pa U Np Pu Am Cm Bk Cf Es Fm
CII Md No Lr Ku Ns                  
CII                            

 

Table 5 shows how the electron layers are filled in the atoms of the elements of the 13th period. The period may give an idea how the electron layers are filled in the atoms of other elements.

The number of layers in the atom corresponds to the number of the period in which it is located. The maximum possible number of the electrons in the layer is equal to the number of elements in the period in which the layer is filled. In the first layer, both electrons are in the first steady state.

Eight electrons in the second layer are in the second steady state, the electrons of the third and the forth layer are in the third, and the electrons of all other layers are in the forth steady state.

Table 5

Electrons Allocation in the Atoms of 13th Period

Element Number Layer Number
                         
k=1 k=2 k=3 k=4
                           
                           
                           
                           
                           
                           
                           
                           

In a specified periodical table of elements one period contains two elements, six periods contain 8 elements each, four periods contain 10 elements each, and two periods contain 14 elements each. In some periods, there is the same regularity in the change of the element’s properties with the increase of the number of electrons in the atom’s external layer. Thus, the second and the third periods beginning with alkaline elements; the fifth, the seventh, the tenth, and the thirteenth periods beginning with the elements of the copper group; the fourth; the sixth, the ninth, and the twelfth containing 10 elements each; the eighth and the eleventh containing 14 elements each are similar.

The results of calculations on authors’ equations concur to a high precision with the experimental data. Table 6 shows the values of fundamental physical constants obtained experimentally and calculated with equations below:

; : :

; : .

Table 6

Physical Constants

Constant Calculation Experiment
Ionization Potential E'H, eV 13.59829218 13.5985
Electron Velocity V'H ∙10-6, meters per second 2.186500601 -
Constant of Fine Structure 1/α', m-1 137.0359895 137.0359895
Rydberg’s Constant 1.097373153 1.097373153
Orbital Period for Electron 1.820657574 -
Plank’s Constant 6.626075438 6.6260755

 

As a source data, the values of four constants have been taken [13]:

Velocity of Light c = 2.99792458×108 mps;

Elementary Charge e' = 1.60217733×10-19 Cl;

electron mass m = 9.10938968×10-31­ kg;

Bohr radius r'n = 5.29177249×10-11 m.

For hydrogen atom, bn = 1.000544617.

Table 7

Energies of Spectral Therms of Hydrogen Atom

Therm of an exited state Therm energy, cm-1; Therm difference, cm-1
  According to equation (7) Reference Data
  82258,916 0,365 82259,281 82258,921 0,365 82259,286
    97491,617 0,108 97491,725 0,036 97491,761 97492,213 0,108 97492,321 0,036 97492,357

 

Table 7 shows the values of therms of a hydrogen atom taken from the reference [14] and calculated with the equation (7). The difference between the calculated and the referenced value appears after the fifth or sixth decimal point. This is because last digits of the therm values are given not experimentally, but calculated by the established principles. The differences of the therms characterizing the fine structure of spectrums according to existent and new theory are equal.

 

Bibliography:

17. Шпольский Э.В. Атомная физика. т.I – М.: Физмат, 1963.

18. Зоммерфельд А. Строение атомов и спектры. т. I – М.: Гостехиздат, 1956.

19. Вихман Э. Квантовая физика. т.4 – М.: Наука, 1986.

20. Борн М. Атомная физика. – М.: Мир, 1967.

21. Шпольский Э.В. Атомная физика т.2 – М.: Наука, 1984.

22. Спролул Р. Современная физика. – М.: Фмзматгиз, 1961.

23. Ландау Л.Д., Лифшиц Е.М. Квантовая механика. – М.: Физматгиз, 1961.

24. Кравцов В.А. Массы атомов и энергии связи ядер. – М.: Атомиздат, 1974.

25. Намбу Е. Кварки. – М.: Мир, 1984.

26. Сухоруков В.И., Сухоруков Г.И. Эффект Доплера при движении источника и приемника волн в произвольном направлении // Акустический журнал. – 1986, т.32, №1. – с. 134-136.

27. Сухоруков Г.И. Теоретические модели физического эксперимента. Диссертация на соискание ученой степени доктора физико-математических наук – Братск: 1998.

28. Сухоруков Г.И., Сухоруков В.И., Сухоруков Р.Г. Реальный физический мир без парадоксов. – Иркутск: Изд-во иркут. ун-та, 1993.

29. Таблицы физических величин. Справочник. Под ред. И.К. Кикоина. – М.: Атомиздат, 1976.

30. Радциг А.А., Смирнов В.М. Справочник по атомной и молекулярной физике. – М.: Атомиздат, 1980.

31. Гольдин Л.П., Новиков Г.И. Введение в атомную физику. – М.: Наука, 1969.

32. Власов А.Д., Мурин Б.П. Единицы физических величин в науке и технике: Справочние. – М.: Энергоатомиздат, 1990.

Information about authors:

Georgy I. Soukhorukov

42-A, Naymoushina Str., 8

Bratsk 665709

Russian Federation

Phone: +7 (3953) 37-9529 (home)

e-mail: nil_mu@brstu.ru

 

Edouard G. Soukhorukov

10, Studencheskaya Str., 802

Bratsk 665709

Russian Federation

Phone: +7 (3953) 37-9155

 

Roman G. Soukhorukov

53, Yubileynaya Str., 98

Bratsk 665730

Russian Federation

Phone: +7 (3953) 33-1803

 

Issue date: 22 August 2000

 

Electronic Version:

© Nauka I Tekhnika (Science And Technics)

www.n-t.org.

 



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2022-09-06 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: