Юрий Алексеевич Гагарин
Владимир Иванович Лебедев
Психология и космос
Шагнув в неизвестность вселенной, Юрий Гагарин шагнул в бессмертие. Величие его дерзновенного подвига еще много раз и по-новому будет осознано в будущем. На примере его жизни будут воспитываться многие поколения. О Гагарине напишут книги, сложат стихи и песни.
И всегда люди будут задаваться вопросом: каким был этот человек?
Кому посчастливилось знать Юрия Гагарина, именно посчастливилось, навечно сохранит в памяти обаятельный образ умного, мужественного, очень честного и скромного человека, верного товарища, настоящего коммуниста. И не просто сохранит — ведь Гагарин заражал всех, кто был рядом с ним, своим активным жизнелюбием, целеустремленностью, творчеством.
Юрий Гагарин, бесспорно, был одним из лучших людей нашего времени, и поэтому именно ему было доверено первым подняться к звездам, стать первопроходцем космических трасс.
Эта книга — о Человеке и Космосе. Ей суждено было стать жизненным завещанием первого в мире космонавта. Свою авторскую подпись на верстке Юрий Гагарин поставил 25 марта 1968 года, а через день его не стало.
В книге Гагарин говорит о космосе и мужестве, о горизонтах науки и смелости человека. На этих страницах — итог его поисков и раздумий, его мечты о будущем.
«Молодогвардейцы»
Ласточка, делающая весну
Космический корабль «Восток» — первая ласточка, которая ознаменовала проникновение человека в просторы вселенной. Поэтому прежде чем рассказывать о психологических особенностях профессиональной подготовки космонавтов, стоит познакомить читателя с тем, как этот корабль устроен, как им управлять, какие условия созданы на нем для жизни человека.
|
Корабль мой — дом мой
Около 100 тысяч лет назад на Европу стал надвигаться ледник и наступило резкое похолодание. Животные, привыкшие к теплому климату, погибали или уходили на юг. Укрываясь от холода, первобытный человек искал спасения в пещерах. Благодаря этому естественному жилищу, а также огню и орудиям труда он приспособился к новым условиям жизни. Прошли сотни веков. На Земле происходили огромные перемены. Изменился и быт человека. Его жилище — сооружение из камня или бетона — надежно защищает его от стужи зимой, от жаркого зноя летом, от дождей и непогоды. Искусственное отопление, освещение и кондиционирование воздуха позволяют постоянно сохранять в домах наиболее благоприятные микроклиматические условия. В этом смысле вполне справедлива известная английская пословица: «Мой дом — моя крепость».
Но если эта «крепость» призвана надежно защищать человека на Земле, то какой же она должна быть в космическом пространстве, где нет воздуха, где температура колеблется от минус 270 до нескольких тысяч градусов выше нуля, где все пространство «простреливается» лучами высоких энергий, где с большой скоростью несутся метеориты и другие небесные тела?
Первый космический корабль «Восток» состоял из двух основных частей: герметической кабины (спускаемого аппарата) и приборного отсека, в котором располагались источники питания, тормозная двигательная установка, радиоаппаратура — короче, все, что необходимо было для орбитального полета.
|
Там, где кабина соединялась с приборным отсеком, размещались баллоны с запасом сжатого воздуха и кислорода. Они предназначались для системы ориентации корабля и для того, чтобы «питать» находившегося в скафандре космонавта, если вдруг разгерметизировалась бы кабина.
Снаружи на приборном отсеке находился блок солнечных датчиков и часть аппаратуры системы ориентации. Кроме того, на обеих частях корабля устанавливался ряд антенн, необходимых для радиосвязи.
При выходе на орбиту и во время полета кабина и приборный отсек составляли единое целое. Перед спуском кабина от отсека отделялась. Приборному отсеку суждено было сгореть в плотных слоях атмосферы, кабина же возвращалась на поверхность планеты благодаря парашютной системе. А чтобы до раскрытия парашютов ее не постигла судьба приборного отсека, ее покрывали теплозащитной оболочкой. Как-никак температура воздуха в пограничном слое у корабля, входившего в атмосферу, достигала 10 тысяч градусов по Цельсию!
«Жилище» космонавта мало чем напоминало привычную «земную» комнату. Прежде всего оно имело шарообразную форму, и размер «жилплощади» следовало измерять не в квадратных, а в кубических единицах. Сфера кабины составляла в диаметре 2,3 метра, а весь объем помещения равнялся 6 кубическим метрам.
Как и всякая комната, кабина была меблирована. Правда, вся обстановка состояла из одного-единственного кресла, в котором космонавт не только работал, но также отдыхал и принимал пищу. На кресле размещалось и оборудование для вентиляции скафандра. Форма кресла позволяла не только трудиться и отдыхать, но и легко переносить перегрузки, когда корабль выходил на орбиту и спускался с нее.
|
Внешне кресло космонавта похоже на сиденье в автобусе дальнего следования или воздушного лайнера. По существу же это своеобразный летательный аппарат. В него встроена специальная реактивная установка, позволяющая космонавту в нужный момент «вылететь» из кабины и самостоятельно спуститься на Землю. Спуск обеспечивался довольно сложной парашютной системой, работающей автоматически.
На высоте 7 тысяч метров автоматически сбрасывалась крышка входного люка, и через 2 секунды происходило катапультирование космонавта вместе с креслом.
Автоматика кресла немедленно включала тормозной парашют. На высоте 4 тысяч метров он отцеплялся и передавал свои функции основному парашюту, который, раскрывшись, отделял космонавта от кресла. В таком положении космонавт приземлялся. При этом включался имевшийся в системе основного парашюта пеленгационный радиопередатчик, позывные которого могли ловить радиостанции спасательных служб.
Если бы вдруг основной парашют отказал, космонавт все равно бы отделился от кресла и спустился на запасном парашюте.
Герметическая кабина приземлялась сама по себе, с помощью своей парашютной системы. На высоте 4 тысяч метров отстреливалась крышка парашютного контейнера и извлекался вытяжной парашют, а тот, в свою очередь, вводил тормозной парашют. На высоте 2500 метров тормозной парашют отцеплялся и начинал действовать основной.
На этом парашюте кабина опускалась довольно медленно, чтобы космонавт мог благополучно вернуться на Землю, если бы он выбрал этот способ приземления.
О своем катапультировании Герман Титов рассказывал:
«Когда „Восток-2“ снизился настолько, что можно было произвести катапультирование, я почувствовал толчок и вылетел из кабины. Яркое солнце ослепило меня. Над головой раскрылся ярко-оранжевый купол парашюта.
Внизу клубились кучевые облака. Я прошел через их влажную толщу и увидел землю, покрытую золотистым жнивьем. Узнал Волгу и два города, расположенных на ее берегах, — Саратов и Энгельс. Значит, все шло так, как было намечено, — приземление происходило в заданном районе.
Чистый солнечный свет сеялся через облака, как из-под абажура. Парашют, раскачиваясь, плавно опускал меня все ниже и ниже».
Чтобы космонавт при катапультировании на больших высотах не погиб от недостатка кислорода, кресло снабжалось баллонами с кислородом, который автоматически подавался в гермошлем скафандра.
Кроме кресла, в кабине размещались система регенерации воздуха, часть радиооборудования, продукты питания и т. д. Через три окна-иллюминатора можно было наблюдать за всем происходящим в космосе и на Земле.
Вот какие чувства испытал один из авторов этой книги, первый из людей, которому посчастливилось взглянуть на Землю из просторов космоса:
«Земля через иллюминатор космического корабля выглядела примерно так же, как при полете на реактивном самолете на больших высотах. Отчетливо вырисовывались горные хребты, крупные реки, лесные массивы, береговая кромка морей. Я хорошо видел облака и легкие тени от них на земной поверхности.
Когда я смотрел на горизонт, то отчетливо видел искривление, что было непривычно. Землю окружал ореол нежно-голубоватого цвета, затем эта полоса постепенно темнела, становилась бирюзовой, синей, фиолетовой и переходила в угольно-черный цвет.
С трепетным волнением всматривался я в этот новый и непривычный для меня мир, стараясь все разглядеть и запомнить. В иллюминаторы виднелись удивительно яркие и холодные звезды. До них было еще далеко — ой как далеко! — и все же с орбиты „Востока“ они казались ближе, чем с Земли. Конечно, дело здесь не в сотнях километров, которые по сравнению со световыми годами, отделяющими нас от звезд, капля в океане, а в принципе — человек преодолел силу земного тяготения и вышел в космос.
В иллюминаторы вставлены жаропрочные стекла. Через них можно вести наблюдение даже на участке спуска, когда вся кабина охвачена пламенем. Это я наблюдал, завершая космический полет, когда корабль сошел с орбиты и стал входить в плотные слои атмосферы. Сквозь шторки, прикрывающие иллюминаторы, я видел жутковатый багровый отсвет пламени, бушующего вокруг корабля. Но в кабине было всего 20 градусов тепла, хотя я и находился в клубке огня, устремляющегося к Земле.
Специальные шторки защищали глаза от прямых солнечных лучей. Этими шторками мне пришлось воспользоваться сразу же, как только в иллюминатор „заглянуло“ Солнце. В космическом пространстве оно светило ослепительно ярко — наверное, во много десятков раз ярче, чем на Земле».
Конечно, если измерять кабину корабля «Восток» мерками земной квартиры, она покажется совсем крохотной. Но если сравнить ее с кабинами самолетов и американских космических кораблей, то она выглядит гораздо просторней, комфортабельней и даже уютней. Валерий Быковский, «безвыходно» прожив в этой «квартире» пять суток полета, дал ей очень высокую оценку. А по расчетам конструкторов, в кабине можно было пробыть на орбите и 12 суток.
Конечно, «Восток» был рассчитан лишь на краткосрочные полеты с одним человеком на борту. В многоместных же кораблях, предназначенных для длительных орбитальных и межпланетных полетов, понадобятся отдельные помещения не только для работы и отдыха, но и для других целей — скажем, для оранжерей с растениями.
Оранжерея Циолковского
Сначала — немного истории.
18 июля 1803 года Робертсон поднялся на воздушном шаре на высоту 7350 метров. Свои ощущения он описал так: «Занимаясь различными опытами, мы испытывали острое недомогание и какой-то страх. Шум в ушах, чувствовавшийся уже много раньше, все увеличивался по мере того, как барометр стал опускаться ниже 13 дюймов (6500 метров). Наше недомогание несколько напоминало ощущение, которое приходится испытывать, когда человек при плавании погружает голову в воду… Мой пульс был ускоренный, у Лоста — замедленный… Мы находились в состоянии моральной и физической апатии и с трудом могли бороться с сонливостью».
В 1875 году три французских воздухоплавателя на воздушном шаре «Зенит» достигли высоты более 8 тысяч метров. Не сумев воспользоваться небольшим количеством кислорода, двое из членов экипажа погибли. Оставшийся в живых пилот Тисандье рассказал о том, что произошло в гондоле. Он видел, как «уснули» его друзья, не сделав даже самой робкой попытки спастись. Сам он тоже испытывал странную апатию: «На высоте 7500 метров состояние делается необычным, тело и разум незаметно ослабевают, но это не осознается. Нет никаких страданий. Наоборот, ощущается внутренняя радость сияния, разлитого вокруг. Все делается безразличным, не думаешь ни о гибельном положении, ни об опасности».
Трагические события, разыгравшиеся во время этого полета, привлекли внимание многих исследователей. Как и в случае с Робертсоном, налицо было кислородное голодание. Естественно, возник вопрос, как обеспечить воздухоплавателей кислородом, необходимым для дыхания. Этой проблеме уделяли особое внимание и при создании микроклимата в кабине космического корабля.
Нормальный газовый состав воздуха на «Востоке» обеспечивала регенерационная установка, в которой использовались высокоактивные химические соединения. Эти соединения обладают способностью поглощать выдыхаемый углекислый газ и одновременно выделять необходимый кислород; кроме того, они поглощают некоторые вредные газообразные продукты, образующиеся в процессе жизнедеятельности человека, и влагу. А влажность воздуха? Она тоже является одним из важнейших условий жизни в кабине космического корабля. Наиболее благоприятный диапазон относительной влажности в атмосфере кабины составляет 30–70 процентов. В таких границах и поддерживала ее регенерационная система «Востока».
Водопоглощающая добавка, нанесенная на поверхность пористых материалов, жадно захватывала и присоединяла к себе пары воды, насыщавшие атмосферу в кабине, и превращалась в кристаллогидрат или насыщенный раствор в зависимости от содержания паров воды в воздухе и продолжительности работы системы.
Нормальную температуру в кабине поддерживала специальная система — жидкостный радиатор, который рассеивал избыток тепла в космическое пространство.
После того как химические соединения выполнят свою миссию, они теряют способность очищать воздух. Это значит, что чем длительнее полет, тем больше нужно брать регенерационного вещества. Но ведь в межпланетных перелетах каждый грамм будет на счету. Где же выход?
Почти 200 лет назад шведский ученый Шееле открыл кислород. Независимо от него этот же газ открыл английский химик Пристли. Пристли заинтересовался: откуда же кислород поступает в атмосферу, если он постоянно тратится при дыхании всего живого и при горении?
С помощью простого опыта ему удалось в 1771 году доказать, что живые существа выдыхают непригодный уже для дыхания воздух, а растения его «очищают». На подоконнике, освещенном солнцем, он поместил под стеклянным колпаком живую мышь. Через несколько часов она сдохла от недостатка кислорода. Но когда ученый поместил под колпак вместе с мышью веточку мяты, животное вело себя, как обычно, и не испытывало каких-либо неудобств. Открытие Пристли произвело на современников огромное впечатление. Но вскоре выяснилось, что этот эксперимент удается далеко не всегда, даже у самого Пристли.
В 1779 году голландец Ян Ингенхауз сделал существенное уточнение: он выяснил, что зеленые растения «очищают» воздух только на солнечном свету.
Еще большую ясность внес в этот загадочный опыт швейцарский ботаник Жан Сенебе. В 1782 году он окончательно установил, что днем при солнечном свете зеленое растение выделяет кислород, и доказал, что оно «очищает» воздух не потому, что «дышит», а в связи с его углеродистым питанием. Растение поглощает из воздуха углекислый газ и расщепляет его на кислород и углерод. Кислород оно освобождает в атмосферу, а из углерода и воды в его организме образуются безазотистые вещества — углеводы (крахмал, сахар). Впоследствии этот процесс получил название фотосинтеза.
К. А. Тимирязев доказал, что фотосинтез может совершаться только на свету и только в зеленых частях растения — в зернах хлорофилла. Он также установил, что эти зерна поглощают не все видимые лучи спектра, а только красные и сине-фиолетовые.
Земля, представляющая собой, по сути дела, огромный космический корабль, несущийся в просторах вселенной, сама подсказала, как решить задачу очищения воздуха. Впервые эту «подсказку» увидел К. Э. Циолковский, предложивший в космических кораблях в миниатюре воспроизводить основные процессы превращения веществ, протекающие на нашей планете. Он писал: «Как земная атмосфера очищает растения при помощи Солнца, так может возобновляться и наша искусственная. Она должна будет так же, как и земная, поддерживать кругооборот необходимых для жизни человека веществ — кислорода и воды — и очищать воздух от углекислого газа».
Идея Циолковского только в наши дни начала воплощаться в действительность. Первые эксперименты, проведенные в научно-исследовательских лабораториях, показали, что за внешней простотой кроются немалые трудности. Фактически речь шла о создании так называемой экологически замкнутой системы, которая полностью выполняла бы по отношению к человеку все функции биосферы Земли.
Не будем касаться сейчас полного цикла обмена веществ и обратимся к одному лишь газообмену. В среднем за сутки человек потребляет один килограмм кислорода и выделяет 1,3 килограмма углекислого газа. Как же сбалансировать этот обмен между растениями и человеком? Как устроить оранжерею в невесомости? Какие выбрать растения? Как обеспечить их размножение? Над этим работают ученые многих стран.
Хлореллу по праву называют космическим растением, хотя она вполне уютно чувствует себя и на Земле: это одна из микроскопических зеленых водорослей, заполняющих водоемы, когда «цветет» вода. В лабораториях хлореллу разводят в специальных открытых водоемах. А вот как выращивать ее в космическом корабле, пока еще не ясно. Очевидно, что к открытому водоему здесь прибегнуть нельзя.
Правда, уже создан компактный автоматизированный культиватор хлореллы с высокой продуктивностью. Но чтобы управлять каким-либо процессом, необходимо знать его происхождение, а многие тайны этой живой и нужной нам клетки не раскрыты до сих пор. И ученые поступили так же, как в свое время поступил И. П. Павлов, когда начал изучать высшую нервную деятельность животных. Он не стал дожидаться, когда каждая нервная клетка раскроет свои тайны и секреты, а попытался постичь общие закономерности работы мозга.
Ученые-сибиряки в своем эксперименте тоже рассматривали общие закономерности «поведения» культуры хлореллы. Они узнали, в частности, как она реагирует на то или иное воздействие — на освещенность, изменение температуры и т. д. Таким путем из десятков факторов, определяющих жизнедеятельность водоросли, удалось выделить несколько главных, а затем на основании полученных данных создать систему контроля и регулирования, которая автоматически поддерживала нужный для успешного развития хлореллы режим.
Корреспондент газеты «Известия», побывавший в лаборатории, писал, что культиватор хлореллы ничем не напоминает оранжерею. Внешне это тщательно закрытый огромный фонарь, скорее похожий на какой-то химический реактор. Внутренние стенки «фонаря» зеркальные и почти не выпускают наружу свет мощной ксеноновой лампы, расположенной по оси культиватора. Хлорелла живет в тонком пятимиллиметровом промежутке между большими пластами, сделанными из органического стекла. Эти «жилища» хлореллы именуют в лаборатории кюветами. Они, как средневековый воротник жабо, охватывают «шею» ксеноновой лампы. Под действием ее лучей в этом зеленом ожерелье и происходит таинственный процесс фотосинтеза. Кюветы с общей поверхностью в 8 квадратных метров, в которых всего 500 (!) граммов хлореллы, полностью удовлетворяют потребность человека в кислороде.
Тридцать дней культиватор хлореллы взамен выдыхаемого углекислого газа давал организму испытательницы кислород. При этом водоросль чутко реагировала на поведение своего «партнера»: во время сна человека, например, ритм ее жизни тоже замедлялся.
«И выходит, без воды…»
Справедливость этих слов из песни к кинофильму «Волга-Волга» вряд ли нужно доказывать. Вода, как известно, составляет 60–65 процентов веса человеческого тела. Потеря хотя бы 10 процентов ее уже опасна для жизни. Без пищи человек может прожить довольно долго, без воды же он погибнет через несколько дней.
Человеческому организму необходимо получать ежесуточно 2–2,5 литра воды. Это количество может колебаться в зависимости от изменений температуры окружающей среды, выполняемой работы, рациона питания и т. д. Но космический полет — тоже работа, притом работа в необычных условиях, а пить космонавт должен обычную воду. И проблема воды становится одной из важнейших в обеспечении космического полета.
Перед первым запуском человека в космос медики должны были ответить на многие вопросы: сможет ли пить воду космонавт в условиях невесомости, в чем ее хранить, как принимать и в каких количествах, каков должен быть запас воды? Уже первые эксперименты на реактивных самолетах показали, что при невесомости вода «выскальзывает» из открытых сосудов, распадается на мелкие шарообразные частицы и начинает «плавать» в кабине.
На «Востоке» система водоснабжения состояла из жесткого контейнера, в котором размещалась емкость из прочной полиэтиленовой пленки. От емкости отходил трубопровод со специальным мундштуком. Чтобы напиться, нужно было взять в рот мундштук, нажать на кнопку специального запирающего устройства и затем всасывать воду. Такой способ утоления жажды не вызывал никаких затруднений.
Но все известные нам полеты длились пока еще не более 14 суток. В этом случае запас воды был достаточен. А как решать «водную проблему» в длительных космических рейсах? Ведь если отправиться в межпланетное путешествие на несколько месяцев или лет, то вода понадобится не только для приготовления пищи, но и для санитарно-гигиенических целей. Космонавтам придется по утрам умываться, принимать душ или ванну. Тут уж 2–2,5 литра, конечно, не хватит.
Допустим, каждый член экипажа будет расходовать 4 литра в сутки (1,2 литра для питья, 1 литр для приготовления пищи и 1,8 литра на санитарно-хозяйственные нужды), тогда экипажу из 6 человек только на один месяц полета необходимо 720 литров. Такой вес брать в полет явно нерентабельно. Что же делать? Очевидно, необходимо вернуть ту воду, которую организм выделяет, испаряет кожей и выдыхает с воздухом. Вот эту влагу ученые и предлагают использовать вновь. Можно также вторично использовать санитарно-хозяйственные (смывные) воды.
Простой подсчет показывает, что уже в полетах, длящихся более месяца, целесообразно пользоваться водой не из запасов, взятых с Земли, а восстановленной методом регенерации из продуктов жизнедеятельности человека, так как регенерационная установка весит по крайней мере в несколько раз меньше, чем общее количество необходимой жидкости.
Поскольку наибольшее количество влаги выделяется из организма с мочой (1,2–1,4 литра в сутки), специалисты прежде всего стали искать способ восстановления воды из этого продукта. Сейчас известен целый ряд химических и физических методов, позволяющих добиться этого. Солнечную энергию можно, например, использовать для выпаривания мочи при высокой температуре, близкой к точке кипения, что в условиях пониженного давления требует относительно небольшой температуры (вакуумная дистилляция).
Если не пользоваться теплом, как это делается при дистилляции, а, наоборот, отнимать его, то при низких температурах образуются кристаллы жидкости которые затем, при таянии, дадут чистую воду. Для такого замораживания также вполне подходит низкая температура межпланетного пространства, которая существует на неосвещенной Солнцем поверхности ракеты.
В зарубежной печати сообщалось, что американский ученый Помпа Дан испытал в лабораторных условиях установку, которая за 8 часов работы восстанавливала 4,5 литра воды из мочи. Жидкость испарялась в теплообменнике при пониженном давлении. Образующийся пар подавался в специальную камеру, где происходило разложение различных вредных веществ. Затем очищенный пар конденсировался. Вода, полученная таким способом, отвечала всем санитарно-гигиеническим требованиям. Клинические исследования не установили никаких нарушений в организме людей, долгое время употреблявших такую воду.
Подобные исследования проводились и в нашей стране.
Еще в 1958 году советский ученый В. И. Данилейко с помощью выпаривания получил из мочи воду, пригодную для питья. Интересно, что те, кого угощали таким «нарзаном», пили его с удовольствием, если не знали, из чего он приготовлен. Только тогда, когда им сообщали технологию приготовления, они начинали чувствовать себя неважно. А это уже область психологии, а не физиологии.
Для очистки мочи использовались и ионные фильтры, которые удаляют из жидкости различные соли. А так как минеральные соли, необходимые для жизни, постоянно присутствуют в питьевой воде, то при очистке мочи стремятся обычно получить не дистиллированную воду, а питьевую, с определенным составом минеральных солей.
Как известно, основная составная часть мочи — мочевина. На ее долю приходится от 80 до 90 процентов всех твердых веществ. Очищать воду от этого вредного для организма химического вещества можно биологическими методами (с помощью микроорганизмов) или с помощью биологически активных веществ — фермента урезы, который содержится в соевых бобах. При его воздействии мочевина разлагается на более простые продукты: аммиак, углекислый газ и воду. Таким образом, при создании экологически замкнутой системы на космических кораблях появляется еще один путь круговорота воды.
Снаряжая дальние космические экспедиции, надо учитывать и то, что в сутки человек выделяет на 10 процентов воды больше, чем потребляет. Связано это с окислением продуктов питания. Следовательно, если космонавты будут питаться только продуктами, взятыми с Земли, а не за счет поступлений из замкнутой экологической системы, то запасы воды на корабле будут возрастать по мере уменьшения продовольствия.
Для нормальных условий жизни в кабинах кораблей необходимо не только устройство для регенерации воды, но и установки для мытья рук, головы, принятия душа. А ведь гигиенические процедуры в космическом полете выполнять не так-то просто: вода при невесомости разлетается в виде шариков во все стороны, не производя моющего эффекта. Избежать этого можно, если монтировать установки во внутренних стенах камер-душевых, а воду в эти камеры подавать под давлением или создавать воздушный поток совместно с водой.
Но больше всего конструкторам приходится думать об экономии. Ведь вся система должна иметь малый вес и небольшие габариты, потреблять минимальное количество энергии и работать автоматически. Нелегко создать и малогабаритную регенерационную установку, надежно работающую в условиях невесомости.
Трапеза на орбите
«Сухари, которыми мы питались, превратились в пыль, смешанную с червями, загаженную крысами и издававшую поэтому невыносимое зловоние… Мы ели кожи, которыми покрывают реи, чтобы веревки не перетерлись деревом. Эти кожи так затвердели, что их приходилось размачивать в морской воде четыре-пять дней, затем мы пекли их на угольях и ели. Часто мы питались древесными опилками, и даже крысы, столь противные человеку, сделались таким изысканным блюдом, что за них платили по полдуката золотом за штуку».
Эта запись — из дневника участника первого кругосветного путешествия Антонио Пигафетты.
Голод!.. Он преграждал путь многим исследователям, устремлявшимся к цели с фанатическим героизмом. Однако даже в бескрайних просторах океанов, в песчаных пустынях, томимые жаждой и голодом, люди не теряли надежды. Грозовые облака несли долгожданную влагу, появление животных и растений — пищу. Наконец, помощь могла прийти и от людей.
Пора великих географических открытий теперь уже позади. Современные экспедиции великолепно оснащаются всем необходимым для жизни, и людям больше не грозит судьба первых землепроходцев.
Освоение космоса можно тоже сравнить с эпохой великих географических открытий. Но окружающая среда, в которую попадают Колумбы вселенной, пострашней, чем у исследователей на Земле. Ведь черные глубины космоса безжизненны. Добыть какую-либо пищу, если иссякнут запасы на борту корабля, абсолютно невозможно.
До начала полетов в космос ученых интересовало не только снабжение космонавта продуктами. Они хотели точно знать, сможет ли он вообще принимать пищу. Особенно беспокоило их, как бы крошки пищевых продуктов, рассеянные в условиях невесомости по кабине, не попали вместе с воздухом в дыхательные пути и не вызвали нарушения дыхания. Чтобы ответить на эти вопросы, тщательно проверяли, как человек питается в условиях кратковременной невесомости, воспроизводимой на самолетах. Летчики пробовали есть кусочки мяса, хлеба и другие твердые продукты. Оказалось, что кусочки сухой пищи разлетаются по кабине и начинают «парить» в воздухе. Обедать в подобной ситуации явно было нелегко.
И все же последнее слово принадлежало космонавтам, отправлявшимся в реальный космический полет.
Чтобы крошки и пыль от пищевых продуктов не попали в дыхательные пути, для первых двух командиров кораблей «Восток» изготовили продукты в виде паштетов, соусов и пюре. Упакована вся эта пища была в тубы емкостью до 160 граммов. В тубах также находился плавленый сыр, шоколадный соус и кофе с молоком. Кроме пюреобразных, были и твердые продукты: хлеб, копченая колбаса, лимонные дольки. Хлеб испекли небольшими шариками, чтобы их можно было, не кусая, положить в рот. Так же расфасованы были и другие твердые продукты.
Командир «Востока» во время своего единственного витка, конечно, не успел проголодаться, но по программе он все же принимал пищу. Титов находился в полете уже сутки и мог, что называется, со смаком пообедать на орбите. После он рассказывал, что в кабине не было ни тарелок, ни ложек, ни вилок, ни салфеток. Протянув руку к контейнерам с пищей, он достал первую тубу. На Земле она весила примерно 150 граммов, в космосе же не весила ничего. В тубе содержался суп-пюре, который он стал выдавливать в рот, как зубную пасту. На второе таким же манером он съел мясной и печеночный паштет и все запил черносмородиновым соком, тоже из тубы. Несколько капель сока пролилось, и они, как ягоды, повисли перед его лицом. Ему было интересно наблюдать, как они, чуть подрагивая, плавают в воздухе. Он подобрал их на пробку от тубы и проглотил.
Опыт первых двух космических полетов позволил расширить ассортимент продуктов. В рацион космонавтов включили разнообразные изделия из мяса: жареное мясо, котлеты, язык, телятину, куриное филе. Появились сандвичи с паюсной икрой, пирожки с килькой, фрукты: яблоки, апельсины, лимоны. Для любителей была предусмотрена даже сушеная вобла.
Питание — не просто прием пищи. Это сложный процесс, в котором тесно сочетаются психологические и физиологические моменты. Даже в кратковременном полете вкусная и любимая пища служит космонавтам своеобразной разрядкой в их напряженной работе. Имеет значение и вкус пищи и условия, в которых ее принимают. Чистая скатерть, приятная посуда, легкая музыка, дружеская беседа способствуют тому, что человек отдыхает за едой. И наоборот: безвкусное и непривлекательное блюдо, плохая сервировка стола могут вызвать раздражение и не только не располагают к отдыху, но и тормозят выделение пищеварительных соков.
На кораблях «Восток» и «Восход» не было, конечно, салонов для обедов, но широкий ассортимент вкусных продуктов позволял космонавтам «заказывать» к столу различные блюда.
Естественно, что в компании время за едой проходит веселее. О такой космической трапезе рассказывал Егоров: «Полет мы провели свободно, в отвязанном состоянии, сидели, опираясь на кресла, меняя позы, менялись даже местами, поворачивались как хотелось. Во время обеда пищу мы брали не только руками, но пытались ловить ее в невесомости ртом. Получалось что-то вроде охоты за едой. Это делалось, конечно, не только ради забавы, но и для опознания невесомости. Все же было очень забавно, и весь обед мы много смеялись. Во время обеда пустили перед собой медицинский аппарат, и он плавал перед нами. Мы назвали его „спутником“. Так что в космосе во время полета выпадали веселые минутки».
Когда в рацион космонавтов ввели натуральные продукты, возник вопрос, как сохранить их в течение нескольких суток — ведь ни на «Востоке», ни на «Восходе» холодильников не было. Попробовали следующий способ. Продукты под вакуумом упаковывали в целлофан и надежно герметизировали. Такая упаковка вполне приемлема — но, увы, только при непродолжительных полетах.
По мнению советских исследователей, лишь в полетах, длящихся не более 6 месяцев, целесообразно иметь полный запас продуктов, взятых с Земли, причем вес и объем этих продуктов должен быть минимальным.
Для этого придется использовать так называемые лиофилизированные, то есть обезвоженные и спрессованные в определенную форму, продукты. Справедливости ради следует все же признать, что подобная пища не вызывает восторга, но что поделаешь — наука требует жертв…
На орбитальные космические станции, которые будут находиться длительное время в околоземном пространстве, да, пожалуй, и на Луну продукты могут доставить с Земли ракеты-такси. В межпланетных полетах такой способ, естественно, непригоден. Где же выход?
Известно, что, когда человек находится в состоянии покоя — скажем, лежит в постели, для поддержания нормальной жизнедеятельности (работа внутренних органов, сохранение тонуса мышц) ему требуется энергия, равная 1500–1700 больших калорий. Во время работы суточный расход энергии значительно возрастает. Например, при тяжелом физическом труде затрачивается 5–6 тысяч больших калорий. При легкой же работе (а с энергетической точки зрения труд космонавтов в полете можно считать легким, за исключением их действий в скафандре за пределами корабля) расходуется в сутки около 3 тысяч больших калорий.
Сколько же нужно продуктов питания, чтобы возместить такие энергетические затраты? Подсчитано, что один грамм углевода или один грамм белка дают при сгорании в организме 4,1 большой калории. Гораздо ценнее в этом отношении жиры: при окислении в организме одного их грамма выделяется 9,3 большой калории. Казалось бы, чего проще — взять 300 граммов чистого жира, благо упаковать этот продукт можно компактно, и удовлетворение суточной потребности человека обеспечено.
Однако пища ведь не только источник энергии, но и строительный материал, необходимый для непрерывного самообновления организма. А для такого строительства нужны прежде всего белки.
Наука довольно точно установила наиболее рациональное соотношение различных веществ в меню. Рацион считается хорошим, если в нем углеводов — четыре части, белка — одна часть и жира — тоже одна. В сутки человек, выполняющий легкую физическую работу, должен получать 400 граммов углеводов, 100 граммов белков и 100 граммов жира, то есть всего 600 граммов (не считая воды). Нетрудно представить, сколько потребуется продуктов экспедиции, отправляющейся, например, к Марсу. Ведь путь туда и обратно займет несколько лет. Килограмм даже сублимированных продуктов, доставленных на поверхность этой планеты, будет стоить дороже, чем килограммовый слиток чистого золота!
Ясно, что нужно искать иной выход. Известно, что материя не исчезает. Организм использует главным образом не само вещество пищи, а энергию, заключенную в нем. Сложные органические соединения — белки, жиры, углеводы, — высвободив энергию, удаляются из организма, но уже в виде простых веществ: азота, углерода, водорода, кальция, фосфора и др. Казалось бы, логично из этих простых веществ вновь синтезировать сложные, которые смог бы опять употреблять человек. Если бы это удалось в космическом полете, потребовалось бы всего несколько килограммов этих веществ на каждого члена экипажа. К сожалению, пока еще, на нынешнем уровне науки и техники, такой синтез трудно осуществим, хотя в принципе и возможен.
На помощь приходит опять-таки оранжерея Циолковского. Как уже говорилось, наземные эксперименты уже позволили «замкнуть кольцо» в экологически замкнутой системе в отношении газообмена и кругооборота воды. Теперь остается рассмотреть последнее звено в этом цикле — использование шлаков организма для получения продуктов питания.