Нормальное распределение (распределение Гаусса) используется при оценке надежности изделий, на которые воздействует ряд случайных факторов, каждый из которых незначительно влияет на результирующий эффект (нет доминирующих факторов). Доказывается [3], что сумма достаточно большого числа независимых (или слабо зависимых) СВ, подчиненных каким угодно законам распределения (при соблюдении некоторых нежестких ограничений), приближенно подчиняется нормальному закону, и это выполняется тем точнее, чем большее количество СВ суммируется. Основное ограничение, налагаемое на суммируемые СВ, состоит в том, чтобы они все равномерно играли в общей сумме относительно малую роль. Если это условие не выполняется и, например, одна из СВ окажется по своему влиянию на сумму резко превалирующей над всеми другими, то закон распределения этой превалирующей СВ наложит свое влияние на сумму и определит в основных чертах ее закон распределения.
Кривая распределения по нормальному закону имеет симметричный холмообразный вид
Ассиметрия распределения тестовых баллов. Эксцесс.
Кривая распределения тестовых баллов отражает свойства пунктов, из которых составлен тест. Если кривая имеет правостороннюю асимметрию, то в тесте преобладают трудные задания; если кривая имеет левостороннюю асимметрию, значит, большинство пунктов в тесте - легкие (слабые). Если подбираются пункты, тесно положительно коррелирующие между собой (испытания не являются статистически независимыми), то в распределении баллов возникает отрицательный эксцесс (рис. 3,а), Максимальных значений отрицательный эксцесс достигает по мере возрастания вогнутости вершины распределения - до образования двух вершин -двух мод (с «провалом» между ними. Бимодальная конфигурация распределения баллов указывает на то, что выборка испытуемых разделилась на две категории (с плавными переходами между ними): одни справились с большинством заданий (согласились с большинством «ли-вопросов»), другие - не справились. Такая конфигурация распределения свидетельствует о том, что в основе пунктов лежит какой-то один общий им всем признак, соответствующий определенному свойству испытуемых: если у испытуемых есть это свойство (способность, умение, знание), то они справляются с большинством пунктов, если этого свойства нет - то не справляются. В некоторых редких ситуациях пункты могут отрицательно коррелировать друг с другом. В этом случае на кривой возникает положительный эксцесс (рис. 3, в): вся масса эмпирических точек собирается вблизи среднего значения. Такое возможно в двух случаях: 1) когда ключ составлен неверно -объединены при подсчете отрицательно связанные признаки, которые обусловливают взаимоуничтожение баллов; 2) когда испытуемые применяют, разгадав направленность опросника, специальную тактику «медианного балла» - искусственно балансируют ответы «за» и «против» одного из полюсов измеряемого качества.
|
Нормализация пунктов.
Нормализация пунктов. Ключ для данного пункта корректируется на базе нормальной модели. Если среди нормативной выборки с данным заданием справились только 16 % испытуемых, то данному пункту на интервальной шкале «трудности» (при условии априорного принятия нормальной модели с параметрами М = 0 и а = 1) соответствует значение +1 (см. график в книге: Анастазй А., 1982, с. 181). Если справились 75 % испытуемых, то балл пункта на сигма-шкале равен-0,67. В результате суммирования по пунктам баллов, скорректированных нормализацией, суммарные баллы лучше приближаются к нормальному распределению.
15. Стандартизация шкалы.
|
Стандартизация – унификация, приведение к единым нормативам процедуры и оценок теста. Благодаря стандартизации методики достигается сопоставимость полученных результатов у разных испытуемых и появляется возможность выражения тестовых оценок в относительных к выборке стандартизации показателях
В психометрике следует различать две формы стандартизации. Под стандартизацией теста понимают, прежде всего, стандартизацию самой процедуры проведения, инструкций, бланков, способа регистрации, условий и т. п. Без стандартизации теста невозможно получить нормативного распределения тестовых баллов и, следовательно, тестовых норм.
Под стандартизацией шкалы понимают линейное преобразование масштаба нормальной (или искусственно нормализованной) шкалы.
Применение стандартных шкал позволяет прибегать на практике к более грубым, приближённым способам проверки типа распределения тестовых баллов.
Применение стандартных шкал необходимо для соотнесения результатов по разным тестам, для построения "диагностических профилей" по батарее тестов и тому подобных целей.