О лабораторной работе № 2
на тему:
«Определение параметров нестационарного нелинейного уравнения регрессии»
Выполнила студентка
Очного отделения
Факультета МСРиТ
2 курса 221 группы
Гатчина
Содержание
стр.
Введение ………………………………………………………………………………….……..3
1.Постановка задачи………………………………………………………………………5
2.ПРИВЕДЕНИЕ ИСХОДНОГО НЕЛИНЕЙНОГО УРАВНЕНИЯ РЕГРЕССИИ К ЛИНЕЙНОМУ………………………………………………………………………………………7 3.ПРОВЕРКА НАЛИЧИЯ МУЛЬТИКОЛЛИНЕАРНОСТИ МЕЖДУ ФАКТОРАМИ МОДЕЛИ……………………………………………………………………………………………8
4.ОПРЕДЕЛЕНИЕ ПАРАМЕТРОВ УРАВНЕНИЯ РЕГРЕССИИ. ПОСТРОЕНИЕ УРАВНЕНИЯ РЕГРЕССИИ………………………………………………………………………11
5.ПРОВЕРКА СТАТИСТИЧЕСКОЙ ЗНАЧИМОСТИ УРАВНЕНИЯ РЕГРЕССИИ ………...13
5.1.Проверка случайности колебаний уровней статочной последовательности………...........13
5.2. Проверка соответствия распределения случайной компоненты нормальному закону распределения……………………………………………………………………………………15
5.3.Проверка равенства математического ожидания случайной компоненты нулю………..16
5.4.Проверка независимости значений уровней случайной компоненты……………………17
5.5.Определение точности модели………………………………………………………………18
5.6. Тест ранговой корреляции Спирмена ……………………………………………………….19
6. ПРОВЕРКА НАЛИЧИЯ АНОМАЛЬНЫХ КОЛЕБАНИЙ ИССЛЕДУЕМОЙ МОДЕЛИ..21
7.ОПРЕДЕЛЕНИЕ ОПТИМАЛЬНОГО ВИДА ЛИНИИ ТРЕНДА. ПРОГНОЗ ПОКАЗАТЕЛЕЙ…………………………………………………………………………………..22
Заключение …………………………………………………………………………………..23
Список использованной литературы………………………………………………25
|
Приложение 1……………………………………………………………………….................26
приложение 2…………………………………………………………………………….........27
приложение 3…………………………………………………………………………….........28
ВВЕДЕНИЕ
Специфической особенностью деятельности экономиста является работа в условиях недостатка информации и неполноты исходных данных. Анализ такой информации требует специальных методов, которые составляют один из аспектов эконометрики. Центральной проблемой эконометрики является построение эконометрической модели и определение возможностей ее использования для описания, анализа и прогнозирования реальных экономических процессов.
Становление и развитие эконометрического метода происходили на основе так называемой высшей статистики - на методах парной и множественной регрессии, парной, частной и множественной корреляции, выделения тренда и других компонент временного ряда, на статистическом основании.
Множественная регрессия широко используется в решении проблем спроса, доходности акций, при изучении функции издержек производства, в макроэкономических расчетах и целого ряда других вопросов эконометрики. В настоящее время множественная регрессия - один из наиболее распространенных методов в эконометрике. Основная цель множественной регрессии - построить модель с большим числом факторов, определив при этом влияние каждого из них в отдельности, а также совокупное их воздействие на моделируемый показатель.
Задачей данной работы является оценка адекватности и точности нелинейной нестационарной модели уравнения регрессии с использованием персональных компьютеров.
|
Данная работа состоит из семи глав и трех приложении. Первая глава – постановка задачи.
Во второй главе осуществляется приведение исходного нелинейного уравнения регрессии к линейному по средствам замены переменных.
В третьей главе проверяется наличие мультиколлинеарности между факторами модели.
В главе 4 определяются параметры уравнения регрессии и строится искомое уравнение регрессии.
В пятой главе проверяется статистическая значимость уравнения регрессии. В пункте 5.1. осуществляется проверка колебаний уровней остаточной последовательности при помощи критерия серий, основанного на медиане выборки. В пункте 5.2. проводится проверка соответствия распределения случайной компоненты нормальному закону распределения при помощи показателей ассиметрии и эксцесса. В пункте 5.3. показана проверка равенства математического ожидания случайной компоненты нулю с использованием t-критерия Стьюдента. В пункте 5.4. проверяется независимость значений уровней случайной компоненты с целью выявления существующей автокорреляции остаточной последовательности. В данной работе эта проверка производится при помощи d-критерия Дарбина - Уотсона. В пункте 5.5. определяется точность модели. В качестве статистических показателей точности в данной работе используются следующие: среднеквадратичное отклонение, средняя относительная ошибка аппроксимации, коэффициент сходимости, коэффициент детерминации. В пункте 5.6 проверяется наличие или отсутствие гетероскедастичности исследуемой модели при помощи теста ранговой корреляции Спирмена.
|
В шестой главе осуществляется проверка на наличие аномальных колебании исследуемой модели с помощью метода Ирвина.
В восьмой главе определяется оптимальный вид линии тренда, которые отражены в приложениях, и прогнозируются показатели.
ПОСТАНОВКА ЗАДАЧИ
В данной работе необходимо рассмотреть нелинейную нестационарную модель изучаемого экономического объекта. В качестве объекта исследования представлен экономический процесс, о котором известны следующие статистические данные:
1. Y(t) - ставка % рефинансирования Центробанка;
2. X1(t) - уровень безработицы, %
3. X2(t) - уровень инфляции, %
Требуется найти коэффициенты нелинейной нестационарной модели уравнения множественной регрессии вида:
(1)
где:
Y(t) - ставка % рефинансирования Центробанка;
X1(t) - уровень безработицы, %
X2(t) - уровень инфляции, %
Значения величин Y(t), X1(t), Х2(t) даны в Таблице №1 "Исходные данные". Данное нелинейное уравнение требуется привести к линейному уравнению вида:
(2)
Необходимо:
Ø определить параметры уравнения регрессии, используя замену переменной;
Ø проверить наличие мультиколлинеарности между факторами;
Ø проверить статистическую значимость уравнения в целом и отдельных коэффициентов уравнения. Это позволит оценить адекватность полученной модели исследуемому процессу и возможность её использования для осуществления анализа и проектирования;
Ø проверить отсутствие гетероскедастичности и автокорреляции остатков исследуемой модели, установить адекватность и точность уравнения регрессии;
Ø проверить наличие аномальных наблюдений, используя метод Ирвина.
Таблица №1
ИСХОДНЫЕ ДАННЫЕ
T | X1 | X2 | Y |
25,22 | |||
21,52 | |||
22,32 | |||
21,77 | |||
20,66 | |||
20,14 | |||
17,66 | |||
17,08 | |||
16,87 | |||
18,63 | |||
16,51 | |||
16,95 | |||
19,38 | |||
18,14 | |||
17,94 | |||
19,69 | |||
19,38 | |||
15,88 | |||
16,58 | |||
14,64 |
ПРИВЕДЕНИЕ ИСХОДНОГО НЕЛИНЕЙНОГО УРАВНЕНИЯ РЕГРЕССИИ К ЛИНЕЙНОМУ
Многие экономические процессы наилучшим образом описываются нелинейными уравнениями регрессии. Например, функции спроса и производственные функции. И в этом случае мы не можем применить к ним обычный метод наименьших квадратов и использовать стандартные подходы к оценке статистической надежности.
В связи с этим встает задача о возможности привести нелинейное уравнение к линейному виду.
В тех случаях, когда нелинейность касается факториальных переменных, но не связано с коэффициентами уравнения регрессии, нелинейность обычно устраняется путем замены переменной.
Рассмотрим нелинейное нестационарное уравнение:
Y(t) - ставка % рефинансирования Центробанка;
X1(t) - уровень безработицы, %
X2(t) - уровень инфляции, %
В данном случае нелинейность касается факторных переменных, но не связано с коэффициентами уравнения.
Вводим новые переменные:
Полученное уравнение является линейным как по переменным, так и по параметрам.