Калоригенное действие тиреоидных гормонов




Известно, что общий уровень энергозатрат организма может быть оценен по одному из его интегральных показателей - либо по скорости потребления кислорода, либо по скорости теплообразования. В первом случае исходят из того, что необходимое для жизнедеятельности количество метаболической энергии организм получает в ходе окисления питательных веществ. Поскольку кислород является обязательным участником окислительных реакций, то по скорости и объему потребления кислорода тканями можно судить об интенсивности обмена и его общей величине соответственно.

При использовании в качестве показателя энергообмена скорости теплообразования и общего количества образованного тепла исходят из того, что образование тепла в организме является следствием превращения в тепло любых других видов энергии (например, механической, электрохимической), в которые ранее превращалась энергия химических связей окисленных питательных веществ. Скорость теплообразования и общее количество образованного тепла также позволяют судить об интенсивности обмена и его валовой величине, соответственно.

В ходе биологического окисления химические связи питательных веществ разрываются и высвобождающаяся энергия преобразуется и частично запасается в виде новых макроэргических связей в молекулах АТФ. Эта часть метаболической энергии превращается в тепло при ее использовании на выполнение различных видов работы.

Другая часть энергии химических связей молекул питательных веществ безвозвратно превращается в тепло в ходе биологического окисления. Количество молекул АТФ, синтезирующихся при биологическом окислении зависит от степени сопряжения процессов окисления и фосфорилирования в митохондриях. В обычных условиях на 1 молекулу потребленного 02 синтезируется 3 молекулы АТФ. В суммарном выражении для случая окисления глюкозы это означает, что при превращении 1 молекулы глюкозы будет синтезировано 36 молекул АТФ, в макроэргических связях которых будет запасено определенное количество свободной энергии. Подсчитано, что коэффициент полезного действия окислительного фосфорилирования и образование АТФ, в зависимости от величины отношения Р/О (коэффициент сопряжения) может составлять максимальное значение - 78% при Р/О =

2.5 и минимальное - 62% при Р/О = 2,0.

Таким образом, при окислении 1 молекулы глюкозы от 22 до 38% энергии ее химических связей будет безвозвратно потеряно на этапе окисления в виде так называемой «первичной теплоты». Очевидно, что количество «первичной теплоты», образующееся при окислении питательных веществ, также зависит от степени сопряжения процессов окисления и фосфорилирования.


160 Влияние на процессы обмена веществ и энергии

При разобщении этих процессов образование первичной теплоты возрастает, а количество синтезированных молекул АТФ уменьшается.

Из приведенного примера видно, что разобщение процессов окисления и фосфорилирования в митохондриях является одним из весьма эффективных способов быстрого увеличения образования тепла, не являющегося результатом выполнения работы. Ряд веществ эндогенного происхождения (белок термогенин, жирные кислоты; возможно, липопротеины низкой плотности) и экзогенного происхождения (динитрофеноп) могут разобщать окисление и фосфорилирование в митохондриях.

В противоположность реакциям образования АТФ при окислительном фосфорилировании, реакции и процессы, протекающие с использованием АТФ низкоэффективны, имеют низкий коэффициент полезного действия и сопровождаются большими теплопотерями. Так, КПД Na/K-АТФазы плазматической мембраны нейронов мозга составляет около 57%, а Са++-АТФазы плазматической мембраны нейронов мозга - около 42%. Коэффициенты использования АТФ в процессе сокращения миокарда составляют 10-30%, скелетных мышц -20-30%, а КПД синтеза белков - лишь около 5%.

При проведении подобных расчетов принимается во внимание, что практически весь потребляемый организмом кислород поглощается митохондриями и расходуется на протекающие в них процессы окисления. Однако, в последнее время установлено, что в стандартных условиях, при которых определяется величина основного обмена, митохондриями клеток поглощается лишь около 90% потребляемого организмом кислорода. 6,5-8,3% кислорода, потребляемого организмом, расходуется на процессы окисления жирных кислот в пероксисомах, а остальное его количество (1,7-3,5%) - на другие, протекающие вне митохондрий процессы окисления.

Из общего объема кислорода, поглощаемого митохондриями клеток (90%), лишь 80% сопряжено с процессами образования АТФ, а остальные 20% не могут эффективно использоваться для этих целей из-за постоянной утечки протонов через внутреннюю мембрану митохондрий и других процессов аутоокиспения. В этой связи, по-видимому, реальная величина отношения Р/О в митохондриях составляет менее 3.

Подсчитано, что суммарные потери энергии, связанные с протонной утечкой могут достигать для целого организма около 20% величины энергии основного обмена.

Давно известно, что введение в организм тиреоидных гормонов при заместительной терапии в случаях гипотиреоидизма, или их повышенный уровень при гипертиреоидизме или тиреотоксикозе может сопровождаться повышением потребления кислорода, усилением теплопродукции и даже небольшим повышением температуры тела. Для более точного понимания значения тиреоидных гормонов в процессах энерго- и теплообмена необходимо различать их влияние


Влияние на процессы обмена веществ и энергии 161

на уровень основного обмена, и на уровень метаболизма организма в измененных условиях его существования (например при действии холода, ограничении приема пищи или переедании и др.).

Чтобы ответить на вопрос, с чем может быть связан индуцированный тиреоидными гормонами термогенный эффект, необходимо проанализировать как влияют тиреоидные гормоны на скорость процессов, осуществляющихся с потреблением энергии АТФ; на митохондриапьные процессы сопряжения окисления и фосфорилирования, т.е. на образование «первичной теплоты»; как взаимодействуют тиреоидные гормоны с другими системами организма, активирующими обменные процессы и образование тепла, в частности, с симпатоадренаповой системой. В действии тиреоидных гормонов необходимо различать кратковременный компонент, связанный с влиянием на внеядерные структуры клетки, и долговременный компонент, связанный с влиянием гормонов на ядро.

Для проявления гормональных эффектов после возрастания в организме уровня тиреоидных гормонов требуются определенные различные промежутки времени. Это зависит от того, реализуется ли это действие на уровне ядра (геномном уровне) или на негеномном уровне. Если в первом случае для проявления эффектов требуется часы и сутки, то во втором - минуты или часы.

Окислительные процессы, идущие с потреблением кислорода и синтезом макроэргических соединений, осуществляются главным образом в митохондриях клеток организма, где энергия химических связей питательных веществ превращается в энергию макроэргических связей в молекуле АТФ. Поскольку каждая клетка организма (за исключением эритроцитов и некоторых других) располагает собственным внутриклеточным аппаратом для аэробного окисления питательных веществ и синтеза АТФ, то стимулирующее влияние тиреоидных гормонов на окислительный метаболизм клеток и тканей должно вести к увеличению потребления кислорода целостным организмом.

Потребление кислорода организмом взрослого человека в условиях покоя составляет около 225-250 мл/мин. Оно близко к величине потребления кислорода для обеспечения энергетических потребностей взрослого человека в условиях основного обмена, который бы составил при указанных скоростях потребления кислорода 1575-1750 ккал/сутки. В условиях почти полного отсутствия действия тиреоидных гормонов в организме (например, при отсутствии щитовидной железы) величина основного обмена уменьшается до 40% (около 945 ккал/сутки), а потребление 02 при этом составляет около 150 мл/мин. При высоком избыточном содержании гормонов щитовидной железы максимальное увеличение уровня основного обмена может достичь +80% (3150 ккал/сутки), а потребление кислорода при этом может достигать 400 мл в минуту.

Одним из косвенных показателей интенсивности обменных процессов при изменении уровня тиреоидных гормонов в крови



Влияние на процессы обмена веществ и энергии


является масса тела. В среднем вес пациентов, страдающих гипертиреоидизмом, ниже нормального на 15%, а его повышение является важным признаком положительной реакции на проводимую терапию.

Процессы, контролирующие массу тела, трудно идентифицируемы в каждом конкретном случае. Среди них важное место принадлежит факультативному термогенезу, развивающемуся в ответ на действие холода или переедание. Усиление в этих условиях термогенеза достигается в бурой жировой ткани мелких животных и у новорожденных детей посредством стимуляции |33-адренорецепторов адреномиметиками и трийодтиронином. Синтезируемый при этом белок, разобщающий окисление и фосфорилирование, усиливает термогенез и рассеивание энергии в виде тепла. Недавно |33-адренорецепторы и мРНК белка-разобщителя были найдены у взрослого человека в глубине отложений белого жира, в желчном пузыре и поперечно-ободочной кишке. Эти находки свидетельствуют о возможности экспрессии и у взрослых людей генов специфических для бурой жировой ткани и возможности индукции трийодтиронином факультативного термогенеза.

В ходе основного обмена организма образуется и используется та часть энергии метаболических процессов, которая необходима для поддержания его жизненно необходимых функций. Эта метаболическая энергия расходуется на процессы синтеза различных веществ, работу ионных насосов, работу, связанную с поддержанием на минимальном уровне функций кровообращения, дыхания, пищеварения, выделения.

На осуществление этих функций в условиях покоя организм тратит энергию в виде АТФ, которая синтезируется в митохондриях клеток в количествах, необходимых для осуществления функции этих клеток. Подсчитано, что из общего количества синтезируемой клетками организма АТФ, в условиях основного обмена 25-30% АТФ используется для синтеза белков; 19-28% для обеспечения работы Na/K-АТФазы плазматической мембраны; 4-8% - для обеспечения работы Са++-АТФазы, 2-8% для работы дыхательных мышц, миокарда, гладких мышц сосудов, внутренних органов; 7-10% - для осуществления глюконеогенеза; около 3% - для процессов образования мочи. Определенное количество АТФ расходуется для осуществления прочих процессов жизнедеятельности.

Таким образом, ответ на вопрос почему повышается потребление кислорода митохондриями в условиях основного обмена можно получить, зная, какие функции клеток находятся под контролем тиреоидных гормонов и могут ли тиреоидные гормоны влиять непосредственно на клеточное дыхание и механизмы сопряжения дыхания и фосфорилирования в митохондриях. Ранее в этой главе уже было рассмотрено стимулирующее влияние тиреоидных гормонов на такой высокозатратный процесс потребления АТФ, как синтез белков.


Влияние на процессы обмена веществ и энергии





Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2019-04-03 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: