Дифференциальные уравнения. Обыкновенным дифференциальным уравнением называется уравнение




Обыкновенным дифференциальным уравнением называется уравнение

F(x, y, y/, y//, …, y(n))=0,

которое связывает независимый аргумент х, неизвестную функцию у и ее производные y, y/, y//, …, y(n).

Порядком дифференциального уравнения называется максимальный порядок производной, входящей в уравнение.

Решением дифференциального уравнения называется функция y = φ(x) которая при подстановке в уравнение превращает его в верное тождество. График этой функции называется интегральной кривой.

Для дифференциального уравнения n–го порядка

y(n) = f(x, y, y/, y//, …, y(n-1))

задача Коши формулируется следующим образом: для заданных начальных условий у0 = у(х0), у/0), …, у(n-1)0) найти решение уравнения y(n) = f(x, y, y/, y//, …, y(n-1)), удовлетворяющее начальным условиям.

Функция у = ψ(х, С1, С2, …, Сn), где С1, С2, …, Сn – произвольные постоянные, называется общим решением уравнения F(x, y, y/, y//, …, y(n))=0, если выполняются два условия:

1) для любых значений С1, С2, …, Сn функция у = ψ(х, С1, С2, …, Сn) является решением дифференциального уравнения F(x, y, y/, y//, …, y(n))=0;

2) для любой точки М00, у0, , , ) (n + 1)-мерного пространства существуют такие константы , , …, , при которых график решения у = ψ(х, С1, С2, …, Сn) проходит через точку М00, у0, , , ).

Общее решение, записанное в неявном виде, называется общим интегралом. Если в общем решении у = ψ(х, С1, С2, …, Сn) зафиксированы константы С1, С2, …, Сn, то у = ψ(х, С1, С2, …, Сn) называется частным интегралом. Решить дифференциальное уравнение – значит найти его общее решение или общий интеграл.

Дифференциальные уравнения первого порядка

Уравнения с разделяющимися переменными.

Любое дифференциальное уравнение вида φ(x) dx = ψ(y) dy называется уравнением с разделенными переменными.

Уравнение, которое приводится к виду φ(x) dx = ψ(y) dy, называется дифференциальным уравнением с разделяющимися переменными.

Пример 1. Решить дифференциальное уравнение .

Решение. Уравнение является уравнением с разделяющимися переменными. Приведем его к виду φ(x) dx = ψ(y) dy:

Если равны дифференциалы, то равны неопределенные интегралы . Отсюда получаем – общий интеграл и у = Сх – общее решение.

Пример 2. Решить дифференциальное уравнение (х2 – 1)у/ + 2ху2 = 0 и найти частное решение, удовлетворяющее начальному условию у(0) = 1.

Решение. (х2 – 1)dy = - 2ху2 dx

.

Таким образом, получаем общий интеграл у() = 1.

Подставляем начальное условие у(0) = 1: 1(0 + С) = 1 С = 1.

Отсюда получаем частный интеграл у() = 1.

Однородные дифференциальные уравнения первого порядка.

Функция f(x, y) называется однородной функцией m-го измерения, если f(λx, λy) = .

Дифференциальное уравнение вида

P(x, y)dx + Q(x, y)dy = 0,

где P(x, y) и Q(x, y) – однородные функции одинакового измерения, называется однородным дифференциальным уравнением первого порядка.

Уравнение P(x, y)dx + Q(x, y)dy = 0 можно привести к виду у/ = f(x, y), где f(x, y) – однородная функция нулевого измерения.

С помощью замены y = ux, где u – новая неизвестная функция, уравнение P(x, y)dx + Q(x, y)dy = 0 сводится к уравнению с разделяющимися переменными.

Пример 3.

Решение. Так как является однородным уравнением. Сделав замену y = ux, получим

Линейные уравнения первого порядка.

Линейным дифференциальным уравнением первого порядка называется уравнение вида a1(x)y/ + a0(x)y = b(x) или y/ + p(x)y = q(x).

Уравнение вида y/ + p(x)y = уnq(x), где n ≠ 0, n ≠ 1, называется уравнением Бернулли.

Для решения линейного уравнения можно применить подстановку

y = uv,

y/ = u/v + uv/,

где u и v – функции от х. Тогда уравнение y/ + p(x)y = q(x) примет вид

u/ + p(x)uv + uv/ = q(x),

u/ + (p(x)uv + uv/) = q(x),

u/ + u(p(x)v + v/) = q(x).

Если потребовать, чтобы выражение в скобках было равно нулю, т.е. p(x)v +v/ = 0, то из этого уравнения можно найти v, затем найдем u, а, следовательно, из y = uv найдем у.

Пример 4. .

Решение. Это линейного уравнение первого порядка, где p(x) = , q(x) = . Применяем подстановку y = uv, y/ = u/v + uv/, получаем

u/v + uv/ uv = ,

u/v + (uv/ uv) = ,

u/v + u(v/ v) = .

Приравниваем к нулю выражение в скобках, находим функцию v:

v/ v = 0 v/ v v ln = 2ln v = x2.

Пример 5.

Решение. Сделав замену y = uv, y/ = u/v + uv/, получим u/v + uv/ =

Сгруппируем вторе слагаемое с третьим: u/v + u(v/ )= .

Приравнивая к нулю выражение в скобках, находим функцию v:

v/ = 0 ln = 2ln .

Подставив v в u/v + u(v/ )= , находим u:

.

Отсюда .

 




Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2019-01-11 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: