Пусть .
Будем считать, что при правильном выборе решения ,
потери статистика отсутствуют (или равны 0).
Тогда ошибка первого рода дает потери 1, а ошибка второго рода
дает потери
.
Данная задача описывается матрицей потерь:
z | ![]() | ![]() |
![]() | ![]() | |
![]() |
Рассмотрим решающую функцию x=d(y), которая делит пространство Y — множество исходов эксперимента на 2 подмножества: S и C(S): , где C(S) — дополнение S до Y.
Если , то принимается решение
;
Если , то принимается решение
.
Так как множества S и C(S) должна быть компактными, необходимо найти границу этого подмножества. Обозначим через — элементы, принадлежащие этой границе. Очевидно, что если множество исходов эксперимента можно описать в виде прямой, то
— это точка на этой прямой. На плоскости
— это линия.
Для нахождения уравнения определяем границу . Рассмотрим выражение для средних потерь. Учитывая данные, приведенные в таблице, потери будут определяться:
.
В общем случае потери .
Граница соответствует одинаковым потерям при решении
и
. Для рассматриваемой задачи уравнение, определяющее границу, определяется как:
.
Отношение правдоподобия в этом случае:
.
Из этого условия следует, что каждому значению q будет соответствовать своя граница и соответственно области S и C(S). Аналогично вероятности ошибочных решений
и
будут определяться априорной вероятностью q.
— вероятность ошибки первого рода;
- вероятность ошибки второго рода. Эти вероятности показывают вероятность того, что при
, а при
Тогда более развернуто:
Для определения характера зависимости вероятностей ошибочных решений от q, сначала оцениваются крайние значения q=0 и q=1. Если , то принимается решение
, которое предполагает, что потери
. Выражая эти потери, можно получить, что
Предположим, что q=0. Это предполагает, что отношение .
Это может быть только в том случае, если: , C(S)=Y. Если посчитать значения коэффициентов
=1,
С(S)=Y.
В другом крайнем состоянии q=1, получаем:
. Это может быть, когда
.
Это условие определяет, что множество исходов эксперимента Y=S, C(S)= Таким образом, вероятности ошибок при изменении
.
Определим средние потери при любом значении как байесовские риски:
Если рассмотреть график зависимости , то он будет иметь вид вогнутой кривой:
На практике встречаются случаи, когда значение q неизвестно, а известна его оценка . Возникает вопрос: «Как поступить?».
При приближенной оценке получим :
Если — грубая оценка, то потери
могут стать больше максимальных потерь при
, то есть
При значимом отличие q от , потери
невыгодны и в этом случае удобнее исходить из наиболее неблагоприятного
. Ориентированные на потери
можно рассматривать как минимаксные потери, стратегию
как минимаксную стратегию. Применение байесовских принципов оправдано, когда q хорошая оценка
, а при плохих оценках используется минимаксный принцип выбора стратегий.
Анализ целесообразности проведения
Экспериментов.
Пусть в результате проведения единичного эксперимента может появиться k исходов: . Предположим, что имеются вероятности
. Множество состояний природы:
. Обозначим
— вероятность появления исхода эксперимента
при состоянии природы
.
.
Ясно, что для каждого j: .
Считаем, что матрица W известна статистику. Кроме этого известна матрица выигрышей , которая получена статистиком, используя стратегию
в состоянии природы
.
Статистику известна стоимость проведения единичного эксперимента – с.
Анализируя эту информацию, статистик должен дать ответы на два вопроса:
1. целесообразно или нет проведение эксперимента.
2. какую из решающих функций необходимо при этом использовать, если эксперимент будет проводиться.
Рассмотрим обоснования для оценки ответа на первый вопрос.
Пусть в результате эксперимента произошел некоторый исход . Апостериорные вероятности состояния природы
обозначим в виде
. Эти вероятности определяют некоторую матрицу
, которую можно определить через апостериорные вероятности
по формуле Байеса:
.
С помощью апостериорных вероятностей для каждой из чистых стратегий статистика можно определить условно средний выигрыш
Оптимальную стратегию .
Величины являются случайными величинами, вероятность их появления совпадает с вероятностью исхода эксперимента.
Обозначим через вероятность l-ого исхода эксперимента. Она будет определяться вероятностью исхода при всех состояниях природы:
Тогда дополнительный выигрыш, который можно получить при проведении единичного эксперимента определяется следующим образом:
.
Если , то эксперимент проводить стоит, если же наоборот, то не стоит.