Итак, вы уже знаете, что форма большинства предметов представляет собой сочетание различных геометрических тел или их частей. Следовательно, для чтения и выполнения чертежей нужно знать, как изображаются геометрические тела.
11.1. Проецирование куба и прямоугольного параллелепипеда. Куб располагают так, чтобы его грани были параллельны плоскостям проекций. Тогда они изобразятся на параллельных им плоскостях проекций в натуральную величину — квадратами, а на перпендикулярных плоскостях — отрезками прямых (рис. 76).
Проекциями куба являются три равных квадрата.
На чертеже куба и параллелепипеда указывают три размера: длину, высоту и ширину.
На рисунке 77 деталь образована двумя прямоугольными параллелепипедами, имеющими по две квадратные грани. Обратите внимание, как нанесены на чертеже размеры. Плоские поверхности отмечены тонкими пересекающимися линиями.
Благодаря условному знаку □ форма детали ясна и но одному виду.
11.2. Проецирование правильных треугольной и шестиугольной призм. Основания призм, параллельные горизонтальной плоскости проекций, изображаются на ней в натуральную величину, а на фронтальной и профильной плоскостях — отрезками прямых. Боковые грани изображаются без искажения на тех плоскостях проекций, которым они параллельны, и в виде отрезков прямых на тех, которым они перпендикулярны (рис. 78). Грани, наклоненные к плоскостям проекций, изображаются на них искаженными.
Размеры призм определяются их высотой и размерами фигуры основания. Штрихпунктирными линиями на чертеже проведены оси симметрии.
Рис. 76. Куб и прямоугольный параллелепипед:а— проецирование; б, г—чертежи в системе прямоугольных проекций; в, д— изометрические проекции |
5) |
V | ||
Л | ||
18 | ||
63 |
|
Рис. 78. Призмы. а, г —проецирование; б, д— чертежи в системе прямоугольных проекций;в, еизометрические проекции |
Строить изометрические- проекции призмы начинают с основания. Затем из каждой вершины основания проводят перпендикуляры, на которых откладывают отрезки, равные высоте, и через полученные точки проводят прямые, параллельные ребрам основания.
Чертеж в системе прямоугольных проекций также начинают выполнять с горизонтальной проекции.
11.3. Проецирование правильной четырехугольной пирамиды. Квадратное основание пирамиды проецируется на горизонтальную плоскость Н в натуральную величину. На нем диагоналями изображаются боковые ребра, идущие от вершин основания к вершине пирамиды (рис. 79).
Фронтальная и профильная проекции пирамиды — равнобедренные треугольники.
Размеры пирамиды определяются длиной b двух сторон ее основания и высотой h.
Изометрическую проекцию пирамиды начинают строить с основания. Из центра полученной фигуры проводят перпендикуляр, откладывают на нем высоту пирамиды и соединяют полученную точку с вершинами основания.
11.4. Проецирование цилиндра и конуса. Если круги, лежащие в основаниях цилиндра и конуса, расположены параллельно горизонтальной плоскости Н, их проекции на эту плоскость будут также кругами (рис. 80, 6 и д).
Фронтальная и профильная проекции цилиндра в этом случае — прямоугольники, а конуса — равнобедренные треугольники.
|
Заметьте, что на всех проекциях следует наносить оси сим-
Рис. 79. Пирамида- а — проецирование; 6 — чертеж в системе прямоугольных проекций; в — изометрическая проекция |
3 Черчение
Рис. 80. Цилиндр и конус:а, г —проецирование; б, д —чертежи в системе прямоугольных проекций;в, е— изометрические проекции |
метрии, с проведения которых и начинают выполнение чертежей цилиндра и конуса.
Фронтальная и профильная проекции цилиндра одинаковы. То же можно сказать о проекциях конуса. Поэтому в данном случае профильные проекции на чертеже лишние. Кроме того, благодаря знаку 0 можно представить форму цилиндра по одной проекции (рис. 81). Отсюда следует, что в подобных случаях нет необходи
мости в трех проекциях. Размеры цилиндра и конуса определяются их высотой h и диаметром основания d.
Способы построения изометрической проекции цилиндра и конуса одинаковы. Для этого проводят оси х и у, на которых строят ромб. Стороны его равны диаметру основания цилиндра или конуса. В ромб вписывают овал (см. рис. 66).
11.5. Проекции шара. Все проекции шара — круги, диаметр которых равен диаметру шара (рис. 82). На каждой проекции проводят центровые линии.
Благодаря знаку 0 шар можно изображать в одной проекции. Но если по чертежу трудно отличить сферу от других поверхностей, добавляют слово «сфера», например: «Сфера 0 45».
11.6. Проекции группы геометрических тел. На рисунке 83 даны проекции группы геометрических тел. Можете ли вы сказать, сколько геометрических тел входит в эту группу? Какие это тела?
|
Рассмотрев изображения, можно установить, что на нем даны конус, цилиндр и прямоугольный параллелепипед. Они различно расположены относительно плоскостей проекций и друг друга. Как именно?
Ось конуса перпендикулярна горизонтальной плоскости проекций, а ось цилиндра — профильной плоскости проекций. Две грани параллелепипеда параллельны горизонтальной плоскости проекций. На профильной проекции изображение цилиндра находится справа от изображения параллелепипеда, а на горизонтальной — ниже. Это значит, что цилиндр расположен впереди параллелепипеда, поэтому часть параллелепипеда на фронтальной проекции показана штриховой линией. По го-
С.}
'.3
Рис. 81. Изображение цилиндра в одном виде
ризонтальной и профильной проекциям можно установить, что цилиндр касается параллелепипеда.
Фронтальная проекция конуса касается проекции параллелепипеда. Однако, судя по горизонтальной проекции, параллелепипед не касается конуса. Конус расположен левее цилиндра и параллелепипеда. На профильной проекции он частично их закрывает. Поэтому невидимые участки цилиндра и параллелепипеда показаны штриховыми линиями.
л к 20. Как изменится профильная проекция на рисунке 83, ес- 1т ли из группы геометрических тел удалить конус?
Занимательные задачи
1. На столе лежат шашки, как показано на рисунке 84, а. Сосчитайте по чертежу, сколько шашек находится в первых ближних к вам столбиках. Сколько всего шашек лежит на столе? Если вы затрудняетесь сосчитать их по чертежу, попробуйте сначала взять и сложить шашки в столбики, пользуясь чертежом. Теперь попробуйте правильно выполнить задания.
Вид слеба |
Гпойныи bud
На
а)
Рис. 84. Задания для упражнений
2. На столе в четыре столбика (рис. 84, б) расположены шашки. На чертеже они показаны двумя проекциями. Сколько шашек на стопе, если черных и белых поровну? Для решения этой задачи нужно не только знать правила проецирования, но и уметь логически рассуждать.