Процессинг РНК у бактерий




мРНК прокариот обычно являются полицистронными, т.е. включают в себя последовательности нуклеотидов нескольких генов одного оперона (рис. I.10, а). Полицистронные мРНК бактерий при выполнении своих функций матричных РНК в трансляции не требуют разбиения на последовательности отдельных генов и могут транслироваться непосредственно рибосомами с образованием функционально активных белков. Исключением из правила являются полицистронные ранние мРНК нечетных T-бактериофагов Т3 и Т7, которые после транскрипции in vivo расщепляются до моноцистронных под действием РНКазы III, специфически гидролизующей двухцепочечные РНК. Участие этого фермента в процессинге указывает на наличие характерной вторичной структуры РНК на границах транскриптов отдельных генов вышеупомянутых бактериофагов, что и было обнаружено после определения их первичной структуры.

РНКаза III участвует также в процессинге предшественников рРНК у E. coli, поскольку 5S, 16S и 23S рРНК исходно синтезируются в составе общего первичного транскрипта. При этом в спейсерных участках 30S предшественников между последовательностями 16S и 23S рРНК расположены тРНК. Кроме того, у бактерий обнаружены транскрипты генов тРНК, содержащие до шести тРНК в составе одного предшественника. В процессинге предшественников тРНК у бактерий ключевую роль играет РНКаза P. Для проявления нуклеазной активности у этого необычного фермента требуется присутствие небольшой РНК, прочно ассоциированной с его полипептидной цепью. Именно ей присуща собственная эндонуклеазная активность, что характерно и для других рибозимов (подробнее см. главу 9). Таким образом, зрелые молекулы рРНК и тРНК образуются в клетках как прокариот, так и эукариот в результате серии эндо- и экзонуклеазных воздействий на их предшественники. Основной же посттранскрипционной модификацией является полиаденилирование их 3’-концевых последовательностей.

Полиаденилирование РНК у бактерий. Хотя поли(А)-полимераза E. coli, осуществляющая безматричный синтез поли(А) при наличии РНК-затравок, была очищена в 1962 г., поли(А)-РНК у бактерий не была обнаружена до 1975 г.

 

Рис. I.10. Локализация сайтов полиаденилирования и пути катаболизма бактериальных РНК

а – обобщенная структура бактериальной полицистронной мРНК и положение сайтов полиаденилирования в РНК классов I-VI; б – альтернативные пути катаболизма бактериальных мРНК с участием поли(А)-полимеразы, полинуклеотидфосфорилазы (ПНФазы) и различных РНКаз; РНКаза Х – гипотетическая рибонуклеаза

 

и долгое время после этого рассматривалась как исключение из общего правила и биологический курьез. В настоящее время стало ясно, что полиаденилирование РНК у бактерий столь же обычно, как и у эукариот, и выполняет важные биологические функции. Поли(А)-последовательности бактериальных мРНК значительно короче соответствующих эукариотических. Их длина, в среднем, составляет всего 14–16 нуклеотидов (80–200 – у эукариот), а полиаденилированы лишь от 1 до 40% молекул мРНК каждого определенного вида в клетке (~100% в случае эукариот). Более подробное сравнение свойств поли(А)-последовательностей прокариот и эукариот проведено в разделе 2.2.3.

Классы поли(А)-содержащих РНК бактерий. В зависимости от расположения сайта присоединения поли(А)-последовательности все бактериальные РНК разделяют на шесть классов (см. рис. I.10, а). В РНК первого класса происходит полиаденилирование 3’-концевого нуклеотида, следующего сразу за терминаторной шпилькой r-независимого терминатора последней кодирующей области. У РНК второго класса терминаторная шпилька отщепляется посттранскрипционно РНКазой Е, и к образующемуся 3’-концу присоединяется поли(А). Терминаторная шпилька отсутствует и у полиаденилированных мРНК третьего класса, образующихся с участием r-зависимых терминаторов транскрипции, благодаря особенностям структуры таких терминаторов. В укороченных мРНК четвертого класса отсутствует 3’-концевая кодирующая область, а поли(А) начинается непосредственно за межцистронной терминаторной шпилькой. В РНК пятого класса поли(А)-последовательности локализуются на концах укороченных цистронов, а у РНК шестого класса – на концах 5’-концевых некодирующих последовательностей. На основании структуры поли(А)+-мРНК делается вывод, что полиаденилирование у бактерий не зависит от присутствия в РНК специфических регуляторных сигналов, как это имеет место у эукариот, а определяется наличием у них свободных 3’-OH-групп. Такие промежуточные мРНК разной длины, по-видимому, появляются в результате деградации или преждевременной терминации синтеза полноразмерных транскриптов.

Поли(А)-полимеразы. Полиаденилирование бактериальных мРНК катализирует поли(А)-полимераза (ATP:полирибонуклеотид-аденилилтрансфераза), которая осуществляет независимое от матрицы последовательное присоединение остатков аденилата к 3’-OH-концам молекул РНК в соответствии со следующей реакцией:

РНК + n ATP ® РНК(А)n + nPPi

У E. coli описаны две поли(А)-полимеразы. Поли(А)-полимераза I кодируется локусом pcnB, первоначально идентифицированным в качестве контролирующего число копий плазмид в бактериальных клетках. Процессированная молекула представляет собой полипептид с молекулярной массой 52 кДа, не обладающий гомологией с соответствующими эукариотическими ферментами, однако содержащий сегмент, гомологичный части полипептидной цепи тРНК-нуклеотидилтрансферазы, которая осуществляет посттранскрипционное присоединение акцепторного CCA-тринуклеотида к молекулам тРНК. Даже умеренная сверхэкспрессия рекомбинантного гена pcnB летальна для E. coli. Полная инактивация гена pcnB с помощью делеций не сопровождается прекращением полиаденилирования мРНК, что указывает на присутствие в геноме E. coliвторого аналогичного гена. Такой ген был обнаружен в виде открытой рамки считывания f310, кодирующей полипептид с молекулярной массой 36,3 кДа, обогащенный гидрофобными аминокислотами. Полипептид не обладает гомологией ни с одной из известных бактериальных, вирусных или эукариотических поли(А)-полимераз.

Возможная функциональная роль полиаденилирования РНК у бактерий. Несмотря на то что полиаденилирование РНК интенсивно исследуется более 25 лет, его функциональная роль даже у эукариот полностью не выяснена. Еще меньше известно о роли полиаденилирования РНК у бактерий. Однако из имеющихся данных становится ясно, что влияние полиаденилирования РНК на молекулярные процессы бактериальной клетки весьма разнообразно и распространяется, по крайней мере, на контроль числа копий бактериальных плазмид, стабильность мРНК и ее трансляцию.

Регуляция репликации плазмид через полиаденилирование антисмысловых РНК. Более подробно механизмы регуляции репликации бактериальных плазмид будут рассмотрены в разделе 4.2.2 на примере плазмиды ColE1. Здесь же лишь кратко отметим, что у некоторых групп плазмид, например ColE1 или pBR322, которая является ее производной, регуляция числа копий осуществляется с помощью антисмысловой РНК (РНК I), образующей гибрид с РНК-праймером (РНК II), необходимым для инициации их репликации, и блокирует его функционирование. В соответствии с этим внутриклеточная концентрация РНК I является критическим параметром в регуляции репликации плазмид. Деградация РНК I инициируется отщеплением 5’-концевого пентануклеотида под действием РНКазы Е (РНК I–5) и далее контролируется поли(А)-полимеразой – продуктом гена pcnB. Полиаденилированная РНК I–5 обладает коротким временем полужизни, типичным для бактериальных мРНК (1–2 мин), тогда как немодифицированная РНК I–5 значительно более стабильна (время полужизни – >10 мин). Ускоренная деградация поли(А)-РНК I–5 инициируется полинуклеотидфосфорилазой. У поли(А)--РНК I–5 3’-концевой нуклеотид находится в составе шпильки, что препятствует эффективному действию полинуклеотидфосфорилазы. Однако при наличии короткого поли(А)-хвоста, выступающего за пределы шпильки, РНК I–5 эффективно расщепляется ферментом по 3’-экзонуклеазному механизму. В разрушение поли(А)+-РНК I–5 вносят свой вклад и другие нуклеазы, включая РНКазу Е и РНКазу III. Имеются данные и том, что полиаденилирование само по себе инактивирует РНК I–5, так как оно приводит к характерному изменению ее вторичной структуры.

Влияние полиаденилирования на время полужизни бактериальных мРНК. Описанное выше дестабилизирующее действие полиаденилирования на антисмысловые РНК распространяется и на некоторые бактериальные мРНК. Например, инактивация гена pcnB, кодирующего поли(А)-полимеразу, с помощью делеций сопровождается значительным увеличением времени полужизни мРНК генов lpp, trxA, ompA, а также rpsO на фоне мутаций pnp, rnb и rne, инактивирующих гены полинуклеотидфосфорилазы и соответствующих рибонуклеаз. Поскольку эти результаты были получены в отсутствие РНКазы Е, 3’-концы большинства бактериальных мРНК содержали шпильку, характерную для r-независимых терминаторов транскрипции (см. рис. I.10). Экзонуклеазное расщепление РНК под действием полинуклеотидфосфорилазы и РНКазы II затруднено при наличии такой шпильки и облегчается в присутствии выступающей поли(А)-последовательности (см. рис. I.10, б). Как показано на рисунке, первичный транскрипт в бактериальных клетках может или полиаденилироваться, или подвергнуться экзонуклеазному расщеплению, неэффективному без поли(А)-последовательности, при наличии которой в процесс деградации активно включаются полинуклеотидфосфорилаза и РНКаза II. РНКаза Е может отщеплять как полиаденилированную, так и неполиаденилированную шпильку. Такой незащищенный с 3’-конца транскрипт подвергается атаке 3’-экзонуклеаз, с которой конкурирует полиаденилирование, препятствующее деградации мРНК по этому механизму. Следовательно, полиаденилирование мРНК в бактериальных клетках может выполнять альтернативные функции: дестабилизировать транскрипты при наличии у них 3’-концевых шпилек и стабилизировать "линейные" формы мРНК. Предполагается участие в деградации поли(А)+-мРНК и неизвестной РНКазы Х, поскольку этот процесс может происходить на фоне неактивных полинуклеотидфосфорилазы, РНКазы II и РНКазы Е.

Изображенная на рис. I.10 схема катаболизма первичных бактериальных транскриптов является упрощением, так как предполагает независимое действие нуклеаз. В последнее время, в соответствии с общей тенденцией, накапливаются данные о координированной работе большинства компонентов системы деградации бактериальных РНК в составе сложных мультиферментных комплексов, получивших название деградосом. Полное расщепление РНК с 3’-концевой шпилькой деградосомами требует расхода ATP ATP-зависимой РНК-хеликазой, а также участия белка DnaK, белков теплового шока, энолазы и гликолитического фермента с неизвестной функцией в метаболизме РНК.

Возможная роль полиаденилирования бактериальных мРНК в трансляции. Как будет видно из дальнейшего изложения (см. раздел 2.2.3), поли(А)-последовательности эукариотических РНК постоянно ассоциированы с жизненно важным поли(А)-связывающим белком PAB, который участвует как в регуляции стабильности мРНК, так и их трансляции. Поиск белка с аналогичными функциями у бактерий привел к очистке рибосомного белка S1, который кооперативно связывается с поли(А)-последовательностями мРНК с константой ассоциации 3·106 М–1. Функциональная роль этого взаимодействия в настоящее время не ясна, однако предполагают, что оно может оказывать влияние на трансляцию. Возможно, белок S1 облегчает доставку мРНК к 30S субчастицам рибосом, что должно стимулировать инициацию трансляции.

Полиаденилирование мРНК в митохондриях и хлоропластах. Концепция эндосимбиотического происхождения митохондрий и хлоропластов эукариот из бактерий-эндосимбионтов подкреплена многочисленными экспериментальными данными и является в настоящее время весьма популярной. В этой связи целесообразно рассмотреть особенности полиаденилирования РНК у этих органелл в данном разделе. Полиаденилированные мРНК митохондрий по своей структуре аналогичны мРНК E. coli класса IV (см. рис. I.10, а). Как и у бактерий, полиаденилирование митохондриальных РНК происходит вне зависимости от специфических регуляторных последовательностей, характерных для мРНК эукариот. Средний размер поли(А)-последовательностей мРНК митохондрий в клетках HeLa человека составляет 55 нт, а в клетках асцитных опухолей мышей – 35–55 нт, что соответствует длине поли(А)-последовательностей у бактерий. Поли(А)-полимераза митохондрий клеток гепатомы Морриса обладает молекулярной массой 60 кДа. Она способна добавлять к РНК in vitro поли(А)-последовательности длиной до 600 нт, однако в изолированных митохондриях их размер составляет 20–23 нт. Фермент кодируется ядерным геном.

Длина 3’-концевых поли(А)-последовательностей РНК хлоропластов значительно превышает таковую РНК бактерий и достигает нескольких сотен нуклеотидов, что характерно для эукариотических поли(А)+-РНК. Эти последовательности не обязательно являются гомополимерами остатков аденозина, но могут состоять из кластеров А (75%), перемежающихся последовательностями G (24%), а также C и U (суммарное содержание – 5%), что напоминает свойства некодирующих, обогащенных поли(А) участков мРНК бактериофага Т7. Поли(А)-полимераза хлоропластов гороха (Pisum sativum) состоит из трех субъединиц, среди которых полипептид с молекулярной массой 43 кДа обладает антигенными детерминантами, общими с поли(А)-полимеразой дрожжей, а из двух других гликозилированных субъединиц лишь РНК-связывающий полипептид с молекулярной массой 105 кДа абсолютно необходим для функционирования фермента.

Редактирование пре-мРНК

Недавно появились сообщения о новых механизмах изменения кодирующего потенциала мРНК на посттранскрипционном уровне, названных редактированием РНК (editing). Оказалось, что в клетках многих организмов имеются ферментные системы, способные с высокой специфичностью изменять первичную структуру мРНК, что, в свою очередь, меняет их кодирующий потенциал и приводит к образованию новых функционально значимых белков. Одним из первых был описан механизм редактирования РНК для митохондрий внутриклеточных паразитов – жгутиковых трипаносомид: Crithidia fasciculata, Leishmania tarentolae и Tripanosoma brucei. Митохондриальная (мт) ДНК этих одноклеточных представлена 20–50 идентичными копиями катенанов кольцевых молекул (зацепленные друг за друга кольца в виде гирлянды), называемых максикольцами, которые являются функциональными аналогами мтДНК других эукариот. Кроме того, их митохондрии содержат несколько тысяч копий небольших молекул ДНК (миникольца), функциональное значение которых до недавнего времени оставалось неизвестным. В результате функционирования механизма редактирования мРНК в специфические участки митохондриальной мРНК встраиваются многочисленные остатки уридина (U), не кодируемые максикольцами митохондриального генома, тогда как другие остатки U, включенные в мРНК в результате транскрипции мтДНК, удаляются из транскриптов. При таком "редактировании" кодирующего потенциала мРНК могут быть изменены до нескольких сотен остатков U (табл. I.7), что приводит к образованию протяженных открытых рамок считывания (ОРС), кодирующих у жгутиковых высокогомологичные белки, а также новых кодонов инициации трансляции (AUG), которые отсутствуют у мРНК, не подвергнутых редактированию. Такие модификации мРНК могут создавать новые терминирующие кодоны (UAG и UAA), а также затрагивать 3’-концевые нетранслируемые последовательности мРНК и poly(A)-хвосты. Функциональное значение редактирования этих нетранслируемых последовательностей мРНК неизвестно. Они, как полагают, могут оказывать влияние на стабильность соответствующих мРНК и их содержание внутри клеток.

Выбор последовательностей нуклеотидов в мРНК, которые подвергаются редактированию у трипаносомид, по-видимому, осуществляется с участием небольших РНК-проводников (guide RNAs, gRNA), частично комплементарных редактируемым участкам мРНК и кодируемых миникольцами мтДНК. gРНК являются первичными транскриптами, так как содержат на 5’-концах нуклеозиддифосфаты или нуклеозидтрифосфаты. На их 3’-концах обнаруживают 15 некодируемых остатков U, которые добавляются посттранскрипционно 3’-концевой уридилилтрансферазой.

 

Таблица I.7



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2022-11-01 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: