Для разработки эффективных методов лечения наследственных и приобретенных заболеваний человека, а также для полного понимания их этиологии требуется моделирование соответствующих симптомов на лабораторных животных. В этом случае проблема заключается в направленном введении мутаций в гены организма животных, инактивация которых приводит к развитию патологических процессов. Разработка эффективных методов получения трансгенных животных позволила исследователям вплотную подойти к решению данного вопроса.
Основой для решения послужили две работы, выполненные М. Хупером и М. Куэном с соавторами и опубликованные в 1987 г. Авторам удалось разработать общий подход к избирательной инактивации генов в организме животных. Мишенью для инактивации стал ген гипоксантин-гуанозин-фосфорибозилтрансферазы (ГГФРТ), нефункциональное состояние которого у человека приводит к развитию заболевания Леша–Нихана. Мышей, дефектных по гену ГГФРТ, получали из эмбриональных стволовых клеток линии ES, инактивируя ген с помощью спонтанных мутаций или интегрируя в него геном ретровирусов (разновидность инсерционного мутагенеза). Клетки с инактивированным геном ГГФРТ удобно отделять от клеток дикого типа на селективной питательной среде в присутствии 6-тиогуанина. Позднее было показано, что инактивация гена ГГФРТ может быть достигнута путем гомологичной рекомбинации гена дикого типа с мутантным геном или его частью, которые вводят в клетки ES с помощью электропорации или микроинъекций в составе линеаризованных векторных плазмид. Основная проблема, возникающая при инактивации гена-мишени с помощью гомологичной рекомбинации, заключается в низкой частоте (~10-6) рекомбинационных событий, приводящих к правильной интеграции экзогенной последовательности нуклеотидов в инактивируемый ген. Эта проблема в настоящее время решается путем отбора требуемых мутантных клеток из общей популяции клеток, в которых интеграция инактивирующего вектора в хромосомы произошла случайным образом.
|
Рис. II.29. Схема адресной доставки генов в геном эмбриональных стволовых клеток с использованием гомологичной рекомбинации ("генный нокаут")
Показано положение гена устойчивости к неомицину (neo), интегрированного в экзон 2 инактивируемого гена, который используется для позитивного отбора, а также гена тимидинкиназы вируса простого герпеса (tk), используемого для негативной селекции клеток в присутствии ганцикловира
Чтобы создать селективные условия отбора, в последовательности нуклеотидов рекомбинантной ДНК, гомологичные последовательностям инактивируемого гена, вводят доминантный селектируемый маркер в виде гена устойчивости к антибиотикам (например neo), который экспрессируется только в случае правильной интеграции в ген-мишень под контроль его регуляторных элементов. Другая, более эффективная система отбора основана на одновременном проведении негативной и позитивной селекции клеток, у которых произошла правильная интеграция инактивирующего вектора. В этой системе помимо доминантного селектируемого маркера neo инактивирующий вектор содержит другой маркерный ген, экспрессия которого приводит к гибели клеток ES на селективной среде. Маркерным геном часто является ген тимидинкиназы вируса простого герпеса (HSV-tk), принцип действия которого был рассмотрен выше. Ген HSV-tk вводится в инактивирующий вектор таким образом, что он удаляется в результате гомологичной рекомбинации и сохраняется в хромосоме в случае неспецифической интеграции рекомбинантной ДНК, что приводит к цитотоксическому эффекту. Обобщенная схема направленного введения мутаций в гены животных in vivo, которые приводят к их инактивации во всех клетках трансгенного организма (" генный нокаут "), представлена на рис. II.29.
|
Разработка универсальных методов направленной инактивации любого требуемого гена во всех клетках организма трансгенных животных позволила за короткое время создать модели таких наследственных заболеваний человека, как b-талассемия, мышечная дистрофия Дюшенна, серповидно-клеточная анемия, муковисцидоз, болезнь Леша–Нихана и целого ряда других распространенных синдромов. Создание этих методов открыло также возможности генотерапии наследственных заболеваний путем замещения в клетках зародышевой линии мутантных аллелей на нормальные. Результаты, полученные в этой области, будут обсуждаться в разделе 10.5.
Следует подчеркнуть, что инактивация генов-мишеней у лабораторных животных – не единственный способ моделирования наследственных и особенно приобретенных заболеваний человека, поскольку причиной многих заболеваний является не отсутствие функционирования, а сверхэкспрессия определенных генов. Например, высокий уровень экспрессии трансгена аполипопротеина AII сопровождается развитием острого атеросклероза у трансгенных мышей. Только исчерпывающее знание этиологии заболевания допускает его адекватное моделирование, и, наоборот, лишь создание адекватных моделей может убедить исследователя в том, что он правильно понимает его природу.
|
Трансгенные растения
Способность к вегетативному размножению отличает организм растений от организма высших животных, что заметно облегчает осуществление трансгеноза. Многие клетки растений, например клетки зародыша на ранних стадиях его развития, покоящиеся клетки меристем кончиков побегов и корней, а также сосудистых тканей камбия, находятся в недетерминированном состоянии и, попадая под влияние внешних воздействий, могут дифференцироваться с образованием клеток любых типов, а также давать начало новым растениям. В частности, перенос в питательную среду таких недетерминированных клеток может приводить к их полной дедифференцировке и формированию в культуре недифференцированной ткани каллуса. Такие клетки могут стабилизироваться в жидких суспензионных культурах и расти неограниченно долго. Из недифференцированных тканей многих видов растений можно легко регенерировать целые растения.
Процесс получения трансгенных растений в этом случае начинается с введения требуемых генов в недифференцированные клетки таким образом, чтобы они интегрировались в хромосомы. Введение чужеродных генов в клетки растений облегчается, если их клеточные стенки удаляют с помощью гидролитических ферментов - пектиназы и(или) целлюлазы, что приводит к образованию протопластов. Чужеродные гены, находящиеся в составе векторных плазмид, вводят в протопласты одним из стандартных способов с использованием эндоцитоза, стимулированного полиэтиленгликолем, электропорации, микроинъекций или бомбардировки микрочастицами, нагруженными векторной ДНК. После этого протопласты в течение нескольких дней культивируют на питательной среде для восстановления клеточных стенок и образующиеся клетки-трансфектанты используют для регенерации целых растений.
Основным направлением применения трансгеноза для генетической модификации культурных растений является повышение их устойчивости к неблагоприятным воздействиям окружающей среды, в частности вирусам и гербицидам. Один из таких подходов, в котором антисмысловые РНК были направлены на подавление экспрессии жизненно важных генов вирусов, уже был рассмотрен в разделе 9.1.2.
Другой метод защиты растений от вирусов с помощью трансгенов, предложенный В. Шибальским в 1988 г., успешно используется в настоящее время. Сущность метода заключается во введении в геном растений транс- действующих доминантных летальных генов или, по терминологии Шибальского, " анти-генов ", которые кодируют измененные мутациями белки вирусов, существенные для их воспроизводства, и путем конкурентного замещения соответствующих белков вируса дикого типа прерывают его размножение. В частности, с использованием такого подхода удалось получить очень высокую устойчивость растений к вирусу Х картофеля (PVX). В этом случае в ген репликазы PVX с помощью направленного мутагенеза вводили мутации, сопровождающиеся заменой аминокислот в консервативном участке полипептидной цепи репликазы, ассоциированном с ее каталитическим сайтом. Для экспрессии мутантного трансгена в растениях табака были характерны внутриклеточное накопление инактивированной репликазы и появление высокой устойчивости растений к заражению вирусом PVX.
Еще один современный подход к получению трансгенных растений, устойчивых к вирусам, основан на введении в них трансгенов, экспрессирующих в клетках моноклональные антитела, направленные против вирусных белков. В одной из работ с использованием такого метода создали эффективную систему защиты растений от вируса морщинистой мозаики артишока (AMCV). Для этого сначала получили панель моноклональных антител к вирусу AMCV и отобрали гибридомы, продуцирующие антитела, которые взаимодействуют с консервативными участками белка оболочки вируса. Клетки гибридомы использовали для конструирования библиотеки кДНК, из которой выделили последовательности нуклеотидов, кодирующие полноразмерные тяжелые и легкие цепи иммуноглобулинов G класса 2b. С помощью ПЦР и универсальных праймеров амплифицировали вариабельные участки этих последовательностей (VH и VL), которые далее клонировали в экспрессирующем векторе E. coli, что сопровождалось образованием полипептидов VH и VL, соединенных линкерным пептидом (антитела scFV). После отбора клонов, продуцирующих высокоаффинные антитела к вирусному антигену (scFV), объединенные таким образом гены VH-VL помещали в экспрессирующий вектор и использовали для получения трансгенных растений табака Nicotiana bentamiana. Трансгенные растения содержали в своих клетках до 0,1% антител от суммарного белка и оказались устойчивыми к AMCV-инфекции, но не к вирусу мозаики цветной капусты (CMV), что указывало на специфический характер их резистентности.
В заключение следует упомянуть о работе, в которой трансгенные растения сорго, устойчивые к гербицидам, получали бомбардировкой незрелых эмбрионов на стадии зиготы микрочастицами золота (диаметр частиц – 1,5–3,0 мкм). В таком случае микрочастицы погружали в раствор экспрессирующего вектора, высушивали и "выстреливали" в клетки-мишени, добиваясь при этом высоких результатов трансфекции.