11.2.1. Секреторная функция
Секреторная функция — деятельность пищеварительных желез, вырабатывающих секрет (пищеварительный сок), с помощью ферментов которого в желудочно-кишечном тракте осуществляется физико-химическое преобразование принятой пищи.
Секреция — процесс образования из веществ, поступивших из крови в секреторные клетки (гландулоциты), секрета определенного функционального назначения и выделения его из железистых клеток в протоки пищеварительных желез.
Секреторный цикл железистой клетки состоит из трех последовательных и взаимосвязанных этапов — поглощения веществ из крови, синтеза из них секреторного продукта и секретовыделения. Клетки пищеварительных желез по характеру продуцируемого секрета подразделяются на белок-, мукоид- и минералсекретирующие. Пищеварительные железы отличаются обильной васкуляризацией. Из крови, протекающей по сосудам железы, секреторные клетки поглощают воду, неорганические и органические низкомолекулярные вещества (аминокислоты, моносахариды, жирные кислоты). Этот процесс осуществляется за счет активности ионных каналов, базальных мембран эндотелиоцитов капилляров, мембран самих секреторных клеток. Из поглощенных веществ на рибосомах гранулярного эндоплазматического ретикулума синтезируется первичный секреторный продукт, который подвергается дальнейшим биохимическим превращениям в аппарате Гольджи и накапливается в конденсирующих вакуолях глан- дулоцитов. Вакуоли превращаются в гранулы зимогена (профермента), покрытые липопротеиновой оболочкой, с помощью которой окончательный секреторный продукт транспортируется через мембрану гландулоцита в протоки железы.
|
Гранулы зимогена выводятся из секреторной клетки по механизму экзоцитоза: после перемещения гранулы к апикальной части гландулоцита происходит слияние двух мембран (гранулы и клетки), и через образовавшиеся отверстия содержимое гранул поступает в ходы и протоки железы.
По характеру выделения секрета этот тип клеток относят к мерокри- новым.
Для голокриновых клеток (клеток поверхностного эпителия желудка) характерно превращение всей массы клетки в секрет в результате ее ферментативной деструкции. Апокриновые клетки выделяют секрет с апикальной (верхушечной) частью своей цитоплазмы (клетки протоков слюнных желез человека в период эмбриогенеза).
Секреты пищеварительных желез состоят из воды, неорганических и органических веществ. Наибольшее значение для химической трансформации пищевых веществ имеют ферменты (вещества белковой природы), являющиеся катализаторами биохимических реакций. Они относятся к группе гидролаз, способных присоединять к перевариваемому субстрату Н+ и ОН”, превращая высокомолекулярные вещества в низкомолекулярные. В зависимости от способности расщеплять определенные вещества ферменты подразделяются на 3 группы: глюколипшческие (гидролизующие углеводы до ди- и моносахаридов), протеолитические (гидролизующие белки до пептидов, пептонов и аминокислот) и липолитические (гидролизующие жиры до глицерина и жирных кислот). Гидролитическая активность ферментов возрастает в известных пределах при повышении температуры перевариваемого субстрата и наличия в ней активаторов, их активность снижается под влиянием ингибиторов. Максимальная гидролитическая активность ферментов слюны, желудочного и кишечного соков обнаруживается при разном оптимуме pH среды.
|
Принято различать несколько типов и подтипов пищеварения.
Гидролиз пищевых веществ за счет ферментов, вырабатываемых пищеварительными железами самого организма, характерен для собственного типа пищеварения. В результате осуществления собственного типа пищеварения образуется основное количество олигомеров, поступающих в кровь и лимфу. Расщепление компонентов пищи ферментами, синтезируемыми микроорганизмами, которые обитают в пищеварительном тракте, называют симбионтным типом пищеварения (поскольку он является следствием симбиоза организмов хозяина и микробов). Так переваривается клетчатка в толстом кишечнике человека.
Гидролиз пищевых веществ ферментами, поступающими в пищеварительный тракт вместе с пищей, относят к аутолитическому типу пищеварения, так как происходит самопереваривание. Аутолитическое пищеварение играет важную роль у новорожденного, потому что компоненты грудного молока перевариваются ферментами, входящими в его состав.
В зависимости от локализации процесса гидролиза пищевых веществ различают два типа пищеварения — внутриклеточное и внеклеточное.
Внутриклеточное пищеварение — расщепление мельчайших частичек пищевых веществ, поступивших в энтероцит путем эндоцитоза, за счет клеточных ферментов. Этот тип пищеварения играет важную роль в кишечном пищеварении в раннем постнатальном периоде развития. По мере формирования функций пищеварительного тракта у ребенка значение внутриклеточного пищеварения уменьшается. Внеклеточное пищеварение А. М. Уголев предложил делить на 2 подтипа — дистанционное и присте-
|
/А О D I
Рис. ПЛ. Схема внеклеточного, внутриклеточного и мембранного гидролиза пищевых веществ.
1 — внеклеточная среда; 2 — перевариваемый субстрат и продукты его гидролиза; 3 — ферменты; 4 — внутриклеточная среда; 5 — мембрана энтероцита; 6 — ядро; 7 ~ внутриклеточная пищеварительная вакуоль, 8 — мезосома.
А — внеклеточное (дистантное) пищеварение. Полимеры и олигомеры пищевых веществ под влиянием ферментов пищеварительных соков в полости кишки гидролизуются до мономеров, которые через мембрану энтероцита транспортируются в его цитоплазму. Б — внутриклеточное цитоплазматическое пищеварение. Олигомеры пищевых веществ проникают через мембрану энтероцита в его цитоплазму и под влиянием ферментов, находящихся в цитоплазме, превращаются в мономеры. В — внутриклеточное вакуольное (внеплазматическое) пищеварение, связанное с эндоцитозом. В мембране энтероцита образуется выпячивание, которое заполняется перевариваемым субстратом и превращается в вакуоль. Вакуоль соединяется с мезосомой, заполненной ферментами, которые расщепляют субстрат до конечных продуктов гидролиза, поступающих через мембрану вакуоли в цитоплазму энтероцита. Г — мембранное пищеварение. Адсорбированные на внешней поверхности мембраны энтероцита ферменты расщепляют олигомеры пищевых веществ до мономеров, которые затем поступают в цитоплазму клетки.
ночное. Дистанционное (полостное) пищеварение осуществляется в полостях пищеварительного тракта, удаленных от мест выработки ферментов. В процессе полостного пищеварения деполимеризация молекул пищевых веществ совершается в основном до олигомеров. Пристеночное пищеварение (контактное, мембранное) совершается в тонком кишечнике — в пристеночном слое слизи, на поверхности ворсинок и микроворсинок, в гли- кокаликсе (мукополисахаридных нитях, связанных с мембраной микроворсинок). В слизи и гликокаликсе содержится много адсорбированных ферментов пищеварительных соков, выделенных в полость кишки и расположенных на огромной площади соприкосновения с перевариваемым субстратом. Поэтому в процессе пристеночного пищеварения значительно увеличивается скорость гидролиза пищевых веществ, что приводит к возрастанию объема всасывания продуктов гидролиза.
Схема внеклеточного и мембранного пищеварения представлена на рис. 11.1. Из этой схемы следует, что при внеклеточном пищеварении (А) ферменты расщепляют субстрат в полости пищеварительного тракта до конечных продуктов гидролиза, которые затем проникают в цитоплазму энтероцита.
В процессе внутриклеточного цитоплазматического пищеварения (Б) крупные осколки молекул пищевых веществ проникают через мембрану энтероцита в его цитоплазму и расщепляются ее ферментами до мономеров. При внутриклеточном вакуольном пищеварении (В) мельчайшие час-
Таблица 11.1. Гормоны желудочно-кишечного тракта, место их образования и вызываемые ими эффекты
Название гормона | Место выработки гормона | Типы эндокринных клеток | Эффект действия гормонов |
Соматостатин Вазоактивный интестинальный | Желудок, проксимальный отдел тонкой кишки, поджелудочная железа Во всех отделах желудочно-кишечного тракта | D- клетки Dr клетки | Тормозит выделение инсулина и глюкагона, большинства известных желудочно-кишечных гормонов (секретина, ГИПа, мотилина, гастрина); тормозит активность париетальных клеток желудка и ацинарных клеток поджелудочной железы Тормозит действие холецистокинина, секрецию соляной кислоты и пепсина желудком, стимулированную гистамином, расслабляет |
Продолжение
Название гормона | Место выработки гормона | Типы эндокринных клеток | Эффект действия гормонов |
(ВИП) пептид Панкреати- | Поджелудочная | Dr | гладкие мышцы кровеносных сосудов, желчного пузыря Антагонист ХЦК-ПЗ, усиливает пролифера |
ческий по- | железа | клетки | цию слизистой оболочки тонкой кишки, |
липептид (ПП) Гастрин | Антральная | G- | поджелудочной железы и печени; участвует в регуляции обмена углеводов и липидов Стимулирует секрецию и выделение пепсина |
часть желудка, | клетки | желудочными железами, возбуждает мотори | |
Гастрон | поджелудочная железа, проксимальный отдел тонкой кишки Антральный от- | G- | ку расслабленного желудка и двенадцатиперстной кишки, а также желчного пузыря Снижает объем желудочной секреции и вы |
дел желудка | клетки | ход кислоты в желудочном соке | |
Бульбогас- | Антральный от- | G- | Тормозит секрецию и моторику желудка |
трон | дел желудка | клетки | |
Дуокринин | Антральный от- | G- | Стимулирует выделение секрета бруннеро |
дел желудка | клетки | вых желез двенадцатиперстной кишки | |
Бомбезин | Желудок и про- | Р-клет- | Стимулирует высвобождение гастрина, уси |
(гастринвы- | ксимальный от- | ки | ливает сокращение желчного пузыря и выде |
свобождаю- | дел тонкой | ление ферментов поджелудочной железой, | |
щиЙ пептид) | кишки | усиливает выделение энтероглюкагона | |
Секретин | Тонкий кишеч | S-клет | Стимулирует секрецию бикарбонатов и воды |
ник | ки | поджелудочной железой, печенью, железами | |
Холецисто | Тонкий кишеч | 1-клет | Бруннера, пепсина; тормозит секрецию в желудке Возбуждает выход ферментов и в слабой сте |
кинин-пан | ник | ки | пени стимулирует выход бикарбонатов под |
креозимин (ХЦК-ПЗ) Энтеро глю | Тонкий кишеч | ЕСГ | желудочной железой, тормозит секрецию соляной кислоты в желудке, усиливает сокращение желчного пузыря и желчевыделение, усиливает моторику тонкой кишки Тормозит секреторную активность желудка, |
кагон | ник | клетки | снижает в желудочном соке содержание К+ и |
Мот ил ин | Проксималь | ес2- | повышает содержание Са2+, тормозит моторику желудка и тонкой кишки Возбуждает секрецию пепсина желудком и |
ный отдел тон | клеткй | секрецию поджелудочной железы, ускоряет | |
Гастроинги | кой кишки Тонкий кишеч | К-клет | эвакуацию содержимого желудка Тормозит выделение соляной кислоты и |
бирующий | ник | ки | пепсина, высвобождение гастрина, моторику |
пептид (ГИП) Нейротен | Дистальный от | N- | желудка, возбуждает секрецию толстой кишки Тормозит секрецию соляной кислоты желе |
зин | дел тонкой | клетки | зами желудка, усиливает высвобождение |
Энкефали | кишки Проксималь | L-клет | глюкагона Тормозит секрецию ферментов поджелудоч |
ны (эндор | ный отдел тон | ки | ной железой, усиливает высвобождение гаст |
фины) | кой кишки и | рина, возбуждает моторику желудка | |
Субстанция | поджелудочная железа Тонкая кишка | ЕСГ | Усиливает моторику кишечника, слюноотде |
Р | клетки | ление, тормозит высвобождение инсулина |
Продолжение
Название гормона | Место выработки гормона | Типы эндокринных клеток | Эффект действия гормонов |
Вилликинин | Двенадцатиперстная кишка | ЕСГ клетки | Стимулирует ритмические сокращения ворсинок тонкой кишки |
Энтерогас- | Двенадцатипер- | ЕС,- | Тормозит секреторную активность и мотори |
трон | стная кишка | клетки | ку желудка |
Серотонин | Желудочно-кишечный тракт | ЕСН ес2- клетки | Тормозит выделение соляной кислоты в желудке, стимулирует выделение пепсина, активирует секрецию поджелудочной железы, желчевыделение, кишечную секрецию |
Гистамин | Желудочно-кишечный тракт | ес2- клетки | Стимулирует выделение секрета желудка и поджелудочной железы, расширяет кровеносные капилляры, оказывает активирующее влияние на моторику желудка и кишечника |
Инсулин | Поджелудочная железа | Бета- клетки | Стимулирует транспорт веществ через клеточные мембраны, способствует утилизации глюкозы и образованию гликогена, тормозит липолиз, активирует липогенез, повышает интенсивность синтеза белка |
Глюкагон | Поджелудочная железа | Альфа- клетки | Мобилизует углеводы, тормозит секрецию желудка и поджелудочной железы, тормозит моторику желудка и кишечника |
Регуляция секреторной деятельности пищеварительных желез осуществляется за счет нервных и гуморальных механизмов. Основными стимулирующими секрецию нервными волокнами являются парасимпатические. Они представляют собой аксоны постганглионарных нейронов. Симпатические нервные волокна тормозят стимулированную секрецию пищеварительных желез и оказывают на железы трофические влияния, усиливая синтез компонентов секрета.
Стимуляторами, ингибиторами и модуляторами секреции пищеварительных желез являются гастроинтестинальные регуляторные пептиды (табл. 11.1).
11.2.2. Моторная функция
Процесс пищеварения во всех отделах пищеварительного тракта осуществляется при участии двигательной активности его мускулатуры. Сокращения мышц обеспечивают: прием и измельчение пищи в процессе жевания в ротовой полости, глотание и продвижение порции пищи по пищеводу, накопление ее в желудке и эвакуацию его содержимого в кишечник, сокращение и расслабление желчного пузыря, перемешивание и продвижение кишечного содержимого, движение ворсинок, переход химуса из тонкой кишки в толстую, его перемещение по толстой кишке, сокращение и расслабление сфинктеров, перистальтику выводных протоков пищеварительных желез и выведение экскрементов.
Гладкая мускулатура пищеварительного тракта состоит из гладкомышечных клеток (миоцитов). Они собраны в пучки и соединены друг с другом нексусами. Пучок получает нервные терминали, артериолу и выполняет роль функциональной единицы гладкой мышцы. Миоциты обладают способностью к спонтанному ритмическому возбуждению за счет периодической деполяризации их мембраны. Это возбуждение распространяется благодаря нексусам от клетки к клетке (как по синцитию). Пучки миоцитов образуют гладкомышечные слои пищеварительной трубки — циркулярный (внутренний), продольный (наружный) и подслизистый (косой).
Растяжение мышц содержимым желудочно-кишечного тракта является для них адекватным раздражителем, вызывающим деполяризацию мембран их клеток и сокращение мышечных волокон. Частота и сила сокращений миоцитов изменяются в широком диапазоне под влиянием нервных импульсов эфферентных терминалей вегетативных нервных волокон, гормонов и гастроинтестинальных регуляторных пептидов. Комплексная нервно-гуморальная регуляция миоцитов обеспечивает соответствие уровня активности мускулатуры объему и составу содержимого желудка и кишечника.
Характер сократительной деятельности мускулатуры пищеварительного тракта зависит от активности водителей ритма, расположенных в желудке и кишечнике (см. раздел 11.5.2). Они представляют собой гладкомышечные клетки, более чувствительные к биологически активным веществам и имеющие более обильную иннервацию, чем другие пучки миоцитов.
На протяжении пищеварительного тракта у человека имеется около 35 сфинктеров. Они состоят из мышечных пучков, расположенных циркулярно (в основном), спирально и продольно. Сокращение циркулярных пучков приводит к смыканию сфинктера, а сокращение спиральных и продольных пучков увеличивает его просвет, что способствует переходу содержимого пищеварительного тракта в нижележащий отдел. Сфинктеры обеспечивают движение содержимого пищеварительной трубки в каудальном направлении и временное разобщение функционально различных частей пищеварительного тракта. Основные из них — кардиальный (на входе в желудок), пилорический (на выходе из желудка), в основании баугиниевой заслонки (на входе в слепую кишку), внутренний и наружный анальный (на выходе из прямой кишки).
Координация сократительной деятельности различных участков мускулатуры пищеварительной трубки осуществляется за счет регулирующих влияний периферической и центральной нервной системы. Парасимпатические нервные волокна в основном усиливают моторику желудка и кишечника. Однако в составе блуждающих нервов имеются и волокна, тормозящие моторику миоцитов. Симпатические нервы оказывают преимущественно тормозные влияния на мышечные пучки.
Миоциты обладают способностью генерировать медленные ритмические колебания мембранного потенциала. В фазе деполяризации мембраны происходит накопление ионов Са2+ в клетке, что активирует кальций- зависимые калиевые каналы. Это вызывает выход К+ из клетки и приводит к деполяризации мембраны. Если деполяризация достигает критического уровня, то на гребне медленной волны возникают потенциалы действия, которые вызывают открытие быстрых потенциалозависимых кальциевых каналов, что приводит к сокращению миоцита (рис. 11.3). На этом рисунке приведена синхронная запись медленных и быстрых колебаний мембранного потенциала миоцита тонкой кишки при внутриклеточной и внеклеточной регистрации. С появлением серии быстрых потенциалов возникает сокращение мышечного волокна.
Медленные волны деполяризации возникают в миоцитах наружной части циркулярного слоя и распространяются как на круговой, так и на продольный мышечные слои (по мышечным мостикам). Это определяет по-
ника.
При сильном возбуждении парасимпатических постганглионарных нейронов повышается концентрация ацетилхолина во внеклеточной среде. Это приводит к непрерывной генерации миоцитами потенциалов действия, которые сопровождаются слиянием фазных сократительных эффектов в слитное сокращение.
Катехоламины влияют на миоциты через адренорецепторы двух типов (альфа и бета), которые подразделяются на четыре подтипа (<Х] и а2, р[ и р2). Воздействие норадреналина на а- и р-адренорецепторы окончаний холинергических нейронов миэнтерального и подслизистого сплетений угнетает выход ацетилхолина из холинергических окончаний, что ослабляет парасимпатические влияния на миоциты и способствует торможению гладкой мускулатуры.
При электрическом раздражении симпатических нервных волокон имеет место торможение сократительной активности кишечника и усиление тонуса циркулярных пучков сфинктеров.
11.2.3. Функция всасывания
Всасывание — это совокупность физиологических и физико-химических процессов транспорта питательных веществ, минеральных соединений и витаминов из полости пищеварительного тракта во внутреннюю среду организма (кровь, лимфу, тканевую жидкость). Всасывание веществ осуществляется на всем протяжении пищеварительного тракта. Но интенсивность этого процесса в разных ее отделах не одинакова. В ротовой полости всасывание компонентов пищи осуществляется в ничтожно малых объемах.
Практическое значение имеет всасывание лишь некоторых лекарственных веществ (например, нитроглицерина, валидола). В желудке всасывается небольшое количество воды, минеральных солей, аминокислот, глюкозы. В значительном количестве из желудка всасывается алкоголь. Основным местом всасывания питательных веществ, минеральных солей и воды является слизистая оболочка тонкого кишечника. В толстом кишечнике всасываются вода, некоторые минеральные соли и продукты микробного гидролиза компонентов пищи. Слизистая оболочка тонкого кишечника представляет собой специализированный орган всасывания. За счет складок, ворсинок и микроворсинок ее всасывательная поверхность возрастает в 300— 500 раз (в сравнении с ее площадью без учета перечисленных анатомо-гистологических образований) и составляет у человека около 200 м2. На 1 мм2 слизистой оболочки приходится от 30 до 40 ворсинок. На апикальной мембране энтероцита, обращенной в полость кишки, обнаружено от 1700 до 4000 микроворсинок. У взрослого человека имеется около Ю10 эн- тероцитов. Следовательно, на 1 мм2 слизистой оболочки кишки приходится 50—100 млн. микроворсинок. Высокая интенсивность всасывания из тонкой кишки тесно сопряжена с высокой эффективностью гидролиза пищевых веществ, обусловленной механизмом мембранного пищеварения и пространственной близостью встроенных в мембрану энтероцита молекул ферментов и транспортных систем продуктов гидролиза.
Процессу всасывания способствует взаимодействие филаментов белка актина микроворсинки с филаментами белка миозина щеточной каймы энтероцита (рис. 11.4).
В процессе гидролиза высокомолекулярных веществ и последующего всасывания продуктов гидролиза принимает участие гликокаликс на поверхности мембраны микроворсинки. Гликокаликс состоит из мукополисахаридных нитей, образующих слой толщиной около 0,1 мкм. Нити связаны друг с другом кальциевыми мостиками и образуют сеть, которая выполняет роль молекулярного сита, препятствующего проникновению к мембране микроворсинки высокомолекулярных веществ. Гликокаликс удерживает на поверхности кишечного эпителия слой слизи и образует единый комплекс, который адсорбирует из содержимого кишки гидролитические ферменты, продолжающие полостной гидролиз на поверхности энтероцита. На мембране микроворсинки процесс деполимеризации молекул пищевых веществ завершается. Образовавшиеся мономеры через мембрану микроворсинки поступают в энтероцит.
В транспорте питательных веществ в энтероцит важную роль играют микроциркуляторная система ворсинок и их сократительная деятельность. Сеть капилляров располагается непосредственно под базальной мембраной энтероцитов. Это способствует транспорту веществ через мембрану энтероцита в кровь. Эндотелий капилляров имеет большое количество фенестр значительного размера (45—67 нм), через которые из межклеточных пространств в кровь проникают крупные молекулы и надмолекулярные структуры. При сокращении мускулатуры ворсинки из нее выжимается лимфа в более крупные лимфатические сосуды, а во время ее расслабления создается присасывающий эффект, так как возврату лимфы препятствуют клапаны лимфатических сосудов. Снижение давления в лимфатическом сосуде ворсинки способствует транспорту веществ из энтероцитов и межклеточных пространств между ними.
Всасывание макромолекул. Крупные молекулы и их агрегаты всасываются в кишечнике по механизму трансцитоза. В энтероцит они поступают путем эндоцитоза. В везикуле, образовавшейся из участка мембраны клетки, вещество транспортируется через цитоплазму энтероцита и выделяется из него в межклеточное пространство путем экзоцитоза. При этом мембрана везикулы (вакуоли), содержащей макромолекулы транспортируемых веществ, «встраивается» в мембрану энтероцита. Сокращения ворсинок способствуют эндоцитозу. Так в кишечнике транспортируются иммуноглобулины, витамины, ферменты, а у новорожденных — белки грудного молока.
Всасывание микромолекул энтероцитами осуществляется по механизму пассивного транспорта (диффузии и осмоса, облегченной диффузии и фильтрации), а также активного транспорта.
Движение молекул через полупроницаемые биологические мембраны энтероцитов в процессе диффузии и осмоса происходит вследствие концентрационных градиентов веществ в цитоплазме клетки и внеклеточной среде. Для облегченной диффузии необходимо наличие мембранных переносчиков.
Процесс фильтрации растворенных в воде веществ осуществляется в силу разности давления жидкости над мембраной, выполняющей роль фильтра, и под ней. О существовании механизма фильтрации при всасывании веществ в кишечнике свидетельствует увеличение скорости всасывания изотонического раствора натрия хлорида при повышении внутрики- шечного давления в процессе осуществления моторики кишки.
Двигательная активность кишечника способствует всасыванию продуктов гидролиза пищевых веществ еще и потому, что она обеспечивает перемешивание пристеночного слоя содержимого кишечника.
Процесс всасывания регулируется с помощью нервных и гуморальных механизмов. При механическом раздражении ворсинок тонкой кишки и под влиянием продуктов гидролиза пищевых веществ (пептидов, аминокислот, глюкозы) они резко усиливают и учащают свои сокращения. Этот эффект сохраняется и после перерезки парасимпатических и симпатических нервов кишечника в опытах на животных, что говорит о его реализации через энтеральную нервную систему.
Редкая и слабая сократительная активность ворсинок кишки голодного животного значительно оживляется при переливании ему крови сытого животного. Это свидетельствует о наличии гуморальных регуляторов всасывания. Установлено, что мощным гуморальным стимулятором активности ворсинок является гормон вилликин, выделяемый эндокринными клетками слизистой оболочки двенадцатиперстной кишки.
венадцати-
перстная
кишка
Стрелки указывают, что перечисленные вещества поступают из полости пищеварительного тракта во внутреннюю среду организма.
Обобщенная схема, отражающая топографию всасывания различных веществ, представлена на рис. 11.5.
Из данного рисунка следует, что зоны всасывания различных веществ частично или полностью перекрываются. В желудке всасываются в основном вода, соединения меди, алкоголь. Продукты гидролиза белков, жиров
и углеводов всасываются в тех же отделах пищеварительного тракта, где осуществляется их переваривание, т. е. в двенадцатиперстной и тощей кишке. Жирорастворимые и водорастворимые витамины (кроме витамина Вп) всасываются в тощей кишке. В подвздошной кишке осуществляется всасывание солей желчных кислот и витамина В12. Двухзарядные катионы (цинка, кальция, магния и железа) всасываются в основном в двенадцатиперстной кишке, а вода, хлориды, основания, жирные кислоты и газы — в толстой кишке.
11.2.4. Общая характеристика механизмов регуляции функций пищеварительной системы
Вне периода пищеварения железы и гладкие мышцы желудочно-кишечного тракта находятся у человека в состоянии относительного покоя, который на короткие промежутки времени прерывается периодической («голодной») активностью (см. раздел 11.3). Прием пищи вызывает рефлекторное усиление секреции слюнных, желудочных и поджелудочных желез, выделение желчи из общего желчного протока (что обусловлено поступлением нервных импульсов из парасимпатических центров регуляции), кратковременное расслабление мускулатуры желудка (пищевая релаксация) и ослабление моторики проксимального отдела тонкой кишки (что является следствием возбуждения симпатических нервных волокон).
Содержимое желудка и кишечника поддерживают вызванную рефлекторным путем секторную и двигательную активность вплоть до завершения пищеварения в кишечнике и всасывания продуктов гидролиза пищевых веществ. Этот эффект является следствием влияния на рецепторы и эндокринные элементы слизистой оболочки желудка и кишечника объема химуса, его консистенции, осмотического давления, pH, температуры, продуктов гидролиза пищевых веществ и экстрактивных веществ.
Нервная регуляция секреции пищеварительных соков и моторики желудка и кишечника осуществляется с помощью центральных, периферических и местных рефлексов. Примером центрального рефлекса является моторный пищеводно-кишечный эффект, реализуемый через ядро блуждающего нерва продолговатого мозга (рис. 11.6), примером периферического — антрофундальная тормозная реакция, рефлекторная дуга которой замыкается в симпатическом ганглии солнечного сплетения (рис. 11.7), примером местного — изменения моторики желудка через нейроны миэнтерального сплетения (рис. 11.8).
Начальные отделы пищеварительного тракта (слюнные железы, мышцы, осуществляющие жевание и глотание, пищевода, желудка и
Рис. 11.6. Рефлекторная дуга центрального пищеводно-кишечного моторного рефлекса.
1 — механорецепторы пищевода; 2 — афферентный нейрон ганглия; 3 — чувствительное ядро продолговатого мозга; 4 — ядро блуждающего нерва (тело преганглионарного нейрона);
5 — преганглионарное парасимпатическое волокно; 6 — ганглионарный парасимпатический нейрон; 7 — гладкомышечные клетки тонкой кишки.
сфинктера Одди, гландулоциты желудка и поджелудочной железы) в наибольшей степени подвержены влияниям УНС. Ее роль в регуляции тонкого и толстого кишечника снижается, но значение интраор- ганной (энтеральной) нервной системы возрастает. Окончания аксонов ее нейронов выделяют различные медиаторы. Возбуждающие влияния на миоциты и гландулоциты оказывают холинергические нейроны, а тормозные — окончания аксонов постганглионарных симпатических нейронов. Тормозной эффект осуществляется также за счет угнетения терминалей холинергических волокон, расположенными на них окончаниями аксонов симпатических нейронов. Торможение миоцитов и гландуло- цитов может быть достигнуто за счет влияния тормозных медиаторов пептидергических нейронов — вазоактивного интестинального пептида (ВИП) и АТФ.
Центральные, периферические и местные рефлексы осуществляются в тесном взаимодействии с гуморальным механизмом регуляции миоцитов, гландулоцитов и нервных клеток.
В слизистой оболочке желудочно-кишечного тракта и в поджелудочной железе имеются эндокринные клетки, которые вырабатывают гастроинтестинальные гормоны (регуляторные пептиды, энтерины). Эти гормоны через кровоток и местно (паракринно, диффундируя через межклеточную жидкость) оказывают влияние на миоциты, гландулоциты, интрамуральные нейроны и эндокринные клетки. Их выработка запускается рефлекторно (через блуждающий нерв) во время приема пищи и длительное время поддерживается за счет раздражающего влияния продуктов гидролиза пищевых веществ и экстрактивных веществ.
Место выработки основных гастроинтестинальных гормонов, вызываемые ими эффекты и продуцирующие их клетки представлены в табл. 11.1. В настоящее время обнаружено около 30 регуляторных пептидов. Как следует из представленной таблицы, они оказывают стимулирующее, тормозное и модулирующее влияние на секрецию пищеварительных соков, моторику гладкой мускулатуры желудочно-кишечного тракта, всасывание, выделение энтеринов эндокринными элементами слизистой оболочки желудка, кишечника и поджелудочной железы.
Выделение гастроинтестинальных гормонов имеет каскадный характер. Например, под влиянием гастрина обкладочные клетки желез желудка увеличивают выработку соляной кислоты, которая в слизистой оболочке тонкой кишки стимулирует выделение S- и J-клетками секретина и холеци- стокинна — панкреозимина. Секретин усиливает секрецию воды и бикарбонатов поджелудочной железой и печенью, а холецистокинин — панкреозимин — возбуждает выделение ферментов поджелудочной железой и тормозит секрецию соляной кислоты обкладочными клетками, усиливает моторику тонкой кишки и желчного пузыря.
Регуляторные пептиды, поступая в кровоток, быстро разрушаются в печени и почках и тем самым создают условия для осуществления эффектов других гастроинтестинальных гормонов.
Выработка некоторых энтеринов носит циклический характер и может осуществляться и при отсутствии пищевого раздражителя. Например, мо- тилин, вырабатываемый ЕС2-клетками проксимального отдела тонкой кишки, вызывает сокращения мышц желудка и кишечника, совпадающие с периодами «голодной» активности пищеварительного тракта (см. раздел 11.3).
Обобщенная схема механизмов регуляции функций пищеварительного тракта представлена на рис. 11.9. Эта схема демонстрирует взаимодействие нервных и гуморальных механизмов регуляции миоцитов, гландулоцитов и эндокринных клеток пищеварительного тракта. В ответ на внешние раздражители, адресованные экстерорецепторам, структуры пищеварительного тракта через вегетативные нервные волокна получают регулирующие влияния, причем по парасимпатическим волокнам — возбуждающие, а по симпатическим — тормозные. При раздражении интерорецепторов слизистой оболочки желудочно-кишечного тракта компонентами химуса (продуктами гидролиза пищи, экстрактивными веществами, крупными фрагментами пищи) рефлекторно изменяется активность мышечных, секреторных и эндокринных элементов. Рефлекс с интерорецепторов удлиняет во времени секреторную и моторную реакцию, вызванную раздражением экс- терорецепторов. Эндокринное звено этого рефлекса подкрепляется ответом эндокриноцитов на непосредственные химические раздражители, диффундирующие в слизистую оболочку пищеварительного тракта из химуса, заполняющего его полость. Гастроинтестинальные гормоны через кровоток и интерстициальные пространства достигают регулируемых секреторных, мышечных и эндокринных элементов.
Нервные импульсы от рецепторов желудочно-кишечного тракта по афферентным путям достигают пищевого центра, доставляя информацию о состоянии процесса пищеварения. Она дополняется гуморальными влияниями, обусловленными поступлением в кровь продуктов гидролиза пищевых веществ и гастроинтестинальных гормонов. Информация, поступающая в пищевой центр по каналам нервной и гуморальной обратной связи,
Экстерорецепторы
Секреты Стимулирующие и тормозные
Полость желудочно-кишечного тракта влияния из полости желудочно
кишечного тракта
Рис. 11.9. Схема механизмов регуляции функций желудочно-кишечного тракта.
ПЖ — пищеварительные железы, ГМ — гладкие мышцы, ЭК — эндокринные клетки, Р — рецепторы, АН — афферентные нейроны, ЭН — эфферентные нейроны, С и П — аксоны симпатических и парасимпатических преганглионарных нейронов, ПК — паракринные влияния, ЦНС — центральная нервная система
вызывает его ответную реакцию, направленную на оптимизацию процесса пищеварения и пищевого поведения животного и человека (см. раздел 11.1).