Е) база для определения относительного положения измеряемой поверхности и отсчета размеров. 3 глава




С) среднесерийном производстве;

D) крупносерийном производстве;

Е) массовом производстве.

 

103.2 При каком типе производства наиболее высокая точность изготовления деталей:

А) единичном производстве;

В) мелкосерийном производстве;

С) среднесерийном производстве;

D) крупносерийном производстве;

Е) массовом производстве.

 

104.1 Наиболее низкая точность изготовления возможна при:

А) единичном производстве;

В) мелкосерийном производстве;

С) среднесерийном производстве;

D) крупносерийном производстве;

Е) массовом производстве.

 

104.2 При каком типе производства наиболее низкая точность изготовления:

А) единичном производстве;

В) мелкосерийном производстве;

С) среднесерийном производстве;

D) крупносерийном производстве;

Е) массовом производстве.

 

105.1 Наиболее высокая производительность возможна при:

А) единичном производстве;

В) мелкосерийном производстве;

С) среднесерийном производстве;

D) крупносерийном производстве;

Е) массовом производстве.

 

105.2 При каком типе производства наиболее высокая производительность:

А) единичном производстве;

В) мелкосерийном производстве;

С) среднесерийном производстве;

D) крупносерийном производстве;

Е) массовом производстве.

 

106.1 Наиболее низкая производительность возможна при:

А) единичном производстве;

В) мелкосерийном производстве;

С) среднесерийном производстве;

D) крупносерийном производстве;

Е) массовом производстве.

 

106.2 При каком типе производства наиболее низкая производительность:

А) единичном производстве;

В) мелкосерийном производстве;

С) среднесерийном производстве;

D) крупносерийном производстве;

Е) массовом производстве.

 

107.1 Наивысшая точность измерений возможна при:

А) единичном производстве;

В) мелкосерийном производстве;

С) среднесерийном производстве;

D) крупносерийном производстве;

Е) массовом производстве.

 

107.2 При каком типе производства наивысшая точность измерений:

А) единичном производстве;

В) мелкосерийном производстве;

С) среднесерийном производстве;

D) крупносерийном производстве;

Е) массовом производстве.

 

108.1 Наибольшие погрешности измерений возможны при:

А) единичном производстве;

В) мелкосерийном производстве;

С) среднесерийном производстве;

D) крупносерийном производстве;

Е) массовом производстве.

 

108.2 При каком типе производства наибольшие погрешности измерений:

А) единичном производстве;

В) мелкосерийном производстве;

С) среднесерийном производстве;

D) крупносерийном производстве;

Е) массовом производстве.

 

109.1 Погрешность базирования заготовки на станке возникает вследствие:

А) не совмещение технологической и измерительной баз;

В) предельного положения заготовки, вызываемого действием зажимных сил;

С) неточности изготовления приспособления и его износе при эксплуатации;

D) остаточных напряжений внутри заготовки;

Е) изготовления деталей в термоконстаннтных цехах.

 

109.2 По какой причине возникает погрешность базирования заготовки на станке:

А) не совмещение технологической и измерительной баз;

В) предельного положения заготовки, вызываемого действием зажимных сил;

С) неточности изготовления приспособления и его износе при эксплуатации;

D) остаточных напряжений внутри заготовки;

Е) изготовления деталей в термоконстаннтных цехах.

 

110.1 Погрешность закрепления заготовки возникает вследствие:

А) не совмещение технологической и измерительной баз;

В) предельного положения заготовки, вызываемого действием зажимных сил;

С) неточности изготовления приспособления и его износе при эксплуатации;

D) остаточных напряжений внутри заготовки;

Е) изготовления деталей в термоконстаннтных цехах.

 

110.2 По какой причине возникает погрешность закрепления заготовки:

А) не совмещение технологической и измерительной баз;

В) предельного положения заготовки, вызываемого действием зажимных сил;

С) неточности изготовления приспособления и его износе при эксплуатации;

D) остаточных напряжений внутри заготовки;

Е) изготовления деталей в термоконстаннтных цехах.

 

111.1 Погрешность приспособления возникает вследствие:

А) не совмещение технологической и измерительной баз;

В) предельного положения заготовки, вызываемого действием зажимных сил;

С) неточности изготовления приспособления и его износе при эксплуатации;

D) остаточных напряжений внутри заготовки;

Е) изготовление деталей в термоконстаннтных цехах.

 

111.2 По какой причине возникает погрешность приспособления:

А) не совмещение технологической и измерительной баз;

В) предельного положения заготовки, вызываемого действием зажимных сил;

С) неточности изготовления приспособления и его износе при эксплуатации;

D) остаточных напряжений внутри заготовки;

Е) изготовление деталей в термоконстаннтных цехах.

 

112.1 Погрешность формы заготовки увеличивается вследствие:

А) не совмещение технологической и измерительной баз;

В) предельного положения заготовки, вызываемого действием зажимных сил;

С) неточности изготовления приспособления и его износе при эксплуатации;

D) остаточных напряжений внутри заготовки;

Е) изготовления деталей в термоконстаннтных цехах.

 

112.2 По какой причине погрешность формы заготовки увеличивается:

А) не совмещение технологической и измерительной баз;

В) предельного положения заготовки, вызываемого действием зажимных сил;

С) неточности изготовления приспособления и его износе при эксплуатации;

D) остаточных напряжений внутри заготовки;

Е) изготовления деталей в термоконстаннтных цехах.

 

113.1 Температурные деформации детали уменьшаются вследствие:

А) не совмещение технологической и измерительной баз;

В) предельного положения заготовки, вызываемого действием зажимных сил;

С) неточности изготовления приспособления и его износе при эксплуатации;

D) остаточных напряжений внутри заготовки;

Е) изготовления деталей в термоконстаннтных цехах.

 

113.2 По какой причине тмпературные деформации детали уменьшаются:

А) не совмещение технологической и измерительной баз;

В) предельного положения заготовки, вызываемого действием зажимных сил;

С) неточности изготовления приспособления и его износе при эксплуатации;

D) остаточных напряжений внутри заготовки;

Е) изготовления деталей в термоконстаннтных цехах.


114.1 Контроль качества шероховатости осуществляется:

А) сравнением с образцами или при помощи профилометра;

В) приборами ТШ и ТК по методу Бриннеля и Роквелла;

С) магнитной или люминесцентной дефектоскопии;

D) поэлементно с использованием индикаторных головок и проверочных линеек;

Е) с помощью призм, центров, контрольных оправок и скалок.

 

114.2 Каким методом осуществляется контроль качества шероховатости:

А) сравнением с образцами или при помощи профилометра;

В) приборами ТШ и ТК по методу Бриннеля и Роквелла;

С) магнитной или люминесцентной дефектоскопии;

D) поэлементно с использованием индикаторных головок и проверочных линеек;

Е) с помощью призм, центров, контрольных оправок и скалок.

 

115.1 Контроль твердости обработанной поверхности осуществляется:

А) сравнением с образцами или при помощи профилометра;

В) приборами ТШ и ТК по методу Бриннеля и Роквелла;

С) магнитной или люминесцентной дефектоскопии;

D) поэлементно с использованием индикаторных головок и проверочных линеек;

Е) с помощью призм, центров, контрольных оправок и скалок.

 

115.2 Каким методом осуществляется контроль твердости обработанной поверхности:

А) сравнением с образцами или при помощи профилометра;

В) приборами ТШ и ТК по методу Бриннеля и Роквелла;

С) магнитной или люминесцентной дефектоскопии;

D) поэлементно с использованием индикаторных головок и проверочных линеек;

Е) с помощью призм, центров, контрольных оправок и скалок.

 

116.1 Выявление микротрещин на обработанной поверхности осуществляется:

А) сравнением с образцами или при помощи профилометра;

В) приборами ТШ и ТК по методу Бриннеля и Роквелла;

С) магнитной или люминесцентной дефектоскопии;

D) поэлементно с использованием индикаторных головок и проверочных линеек;

Е) с помощью призм, центров, контрольных оправок и скалок.

 

116.2 Каким методом осуществляется выявление микротрещин на обработанной поверхности:

А) сравнением с образцами или при помощи профилометра;

В) приборами ТШ и ТК по методу Бриннеля и Роквелла;

С) магнитной или люминесцентной дефектоскопии;

D) поэлементно с использованием индикаторных головок и проверочных линеек;

Е) с помощью призм, центров, контрольных оправок и скалок.

 

117.1 Проверка отклонений формы обработанной поверхности осуществляется:

А) сравнением с образцами или при помощи профилометра;

В) приборами ТШ и ТК по методу Бриннеля и Роквелла;

С) магнитной или люминесцентной дефектоскопии;

D) поэлементно с использованием индикаторных головок и проверочных линеек;

Е) с помощью призм, центров, контрольных оправок и скалок.

117.2 Каким методом осуществляется проверка отклонений формы обработанной поверхности:

А) сравнением с образцами или при помощи профилометра;

В) приборами ТШ и ТК по методу Бриннеля и Роквелла;

С) магнитной или люминесцентной дефектоскопии;

D) поэлементно с использованием индикаторных головок и проверочных линеек;

Е) с помощью призм, центров, контрольных оправок и скалок.

 

118.1 Проверка отклонения расположения поверхности осуществляется:

А) сравнением с образцами или при помощи профилометра;

В) приборами ТШ и ТК по методу Бриннеля и Роквелла;

С) магнитной или люминесцентной дефектоскопии;

D) поэлементно с использованием индикаторных головок и проверочных линеек;

Е) с помощью призм, центров, контрольных оправок и скалок.

 

118.2 Каким методом осуществляется проверка отклонения расположения поверхности:

А) сравнением с образцами или при помощи профилометра;

В) приборами ТШ и ТК по методу Бриннеля и Роквелла;

С) магнитной или люминесцентной дефектоскопии;

D) поэлементно с использованием индикаторных головок и проверочных линеек;

Е) с помощью призм, центров, контрольных оправок и скалок.

 

119.1 Ступенчатые, коленчатые, эксцентриковые, кулачковые валы входят в класс:

А) круглые стержни;

В) полые цилиндры;

С) корпусные детали;

D) некруглые стержни;

Е) тяги.

 

119.2 К какому классу относятся ступенчатые, коленчатые, эксцентриковые, кулачковые валы:

А) круглые стержни;

В) полые цилиндры;

С) корпусные детали;

D) некруглые стержни;

Е) тяги.

 

120.1 Упругие деформации технологической системы выявляют:

А) геометрическую точность станка;

В) конусность, биение износ станка;

С) усилия резания на станке;

D) погрешность изготовления режущего инструмента;

Е) погрешности настройки станка.

 

120.2 Какие параметры станка и инструмента выявляют упругие деформации технологической системы:

А) геометрическую точность станка;

В) конусность, биение износ станка;

С) усилия резания на станке;

D) погрешность изготовления режущего инструмента;

Е) погрешности настройки станка.

 

121.1 Таким символом обозначается:

А) поводковый патрон;

В) механический зажим;

С) жесткий центр;

D) вращающийся центр;

Е) подвижный люнет.

 

121.2 Для обозначения чего используется такой символ:

А) поводковый патрон;

В) механический зажим;

С) жесткий центр;

D) вращающийся центр;

Е) подвижный люнет.

 

122.1 Таким символом обозначается:

А) поводковый патрон;

В) механический зажим;

С) жесткий центр;

D) вращающийся центр;

Е) подвижный люнет.

 

122.2 Для обозначения чего используется такой символ:

А) поводковый патрон;

В) механический зажим;

С) жесткий центр;

D) вращающийся центр;

Е) подвижный люнет.

 

123.1 Таким символом обозначается:

А) поводковый патрон;

В) механический зажим;

С) жесткий центр;

D) вращающийся центр;

Е) подвижный люнет.

 

123.2 Для обозначения чего используется такой символ:

А) поводковый патрон;

В) механический зажим;

С) жесткий центр;

D) вращающийся центр;

Е) подвижный люнет.

 

124.1 Таким символом обозначается:

 

А) поводковый патрон;

В) механический зажим;

С) жесткий центр;

D) вращающийся центр;

Е) подвижный люнет.

124.2 Для обозначения чего используется такой символ:

А) поводковый патрон;

В) механический зажим;

С) жесткий центр;

D) вращающийся центр;

Е) подвижный люнет.

125.1 Таким символом обозначается:

А) поводковый патрон;

В) механический зажим;

С) жесткий центр;

D) вращающийся центр;

Е) подвижный люнет.

125.2 Для обозначения чего используется такой символ:

А) поводковый патрон;

В) механический зажим;

С) жесткий центр;

D) вращающийся центр;

Е) подвижный люнет.

 

126.1 По формуле t сп = t о + t в определяется:

А) норма выработки в час;

В) дополнительное время;

С) штучно-калькуляционное время;

D) оперативное время;

Е) норма штучного времени.

 

126.2 Какой параметр определяется выражением t сп = t о + t в :

А) норма выработки в час;

В) дополнительное время;

С) штучно-калькуляционное время;

D) оперативное время;

Е) норма штучного времени.

 

127.1 По формуле t доп = t сб + t оп определяется:

А) норма выработки в час;

В) дополнительное время;

С) штучно-калькуляционное время;

D) оперативное время;

Е) норма штучного времени.


127.2 Какой параметр определяется выражением t доп = t сб + t о:

А) норма выработки в час;

В) дополнительное время;

С) штучно-калькуляционное время;

D) оперативное время;

Е) норма штучного времени.

 

128.1 По формуле t ш = t о + t в + t об + t от определяется:

А) норма выработки в час;

В) дополнительное время;

С) штучно-калькуляционное время;

D) оперативное время;

Е) норма штучного времени.

 

128.2 Какой параметр определяется выражением t ш = t о + t в + t об + t от:

А) норма выработки в час;

В) дополнительное время;

С) штучно-калькуляционное время;

D) оперативное время;

Е) норма штучного времени.

 

129.1 По формуле t шк = t ш + t п.з. /N определяется:

А) норма выработки в час;

В) дополнительное время;

С) штучно-калькуляционное время;

D) оперативное время;

Е) норма штучного времени.

 

129.2 Какой параметр определяется выражением t шк = t ш + t п.з. /N:

А) норма выработки в час;

В) дополнительное время;

С) штучно-калькуляционное время;

D) оперативное время;

Е) норма штучного времени.

 

130.1 По формуле Q r = 60|t ш определяется:

А) норма выработки в час;

В) дополнительное время;

С) штучно-калькуляционное время;

D) оперативное время;

Е) норма штучного времени.

 

130.2 Какой параметр определяется выражением Q r = 60|t ш:

А) норма выработки в час;

В) дополнительное время;

С) штучно-калькуляционное время;

D) оперативное время;

Е) норма штучного времени.

 

131.1 По формуле Ст = См + Сз + Сцр определяется:

А) технологическая себестоимость;

В) конструктивная материалоемкость;

С) уровень технологичности по трудоемкости;

D) уровень технологичности по технологической себестоимости;

Е) технологическая материалоемкость.

 

131.2 Какой параметр определяется выражением Ст = См + Сз + Сцр:

А) технологическая себестоимость;

В) конструктивная материалоемкость;

С) уровень технологичности по трудоемкости;

D) уровень технологичности по технологической себестоимости;

Е) технологическая материалоемкость.

 

132.1 По формуле Ку.с. = Стбт определяется:

А) технологическая себестоимость;

В) конструктивная материалоемкость;

С) уровень технологичности по трудоемкости;

D) уровень технологичности по технологической себестоимости;

Е) технологическая материалоемкость.

 

132.2 Какой параметр определяется выражением Ку.с. = Стбт:

А) технологическая себестоимость;

В) конструктивная материалоемкость;

С) уровень технологичности по трудоемкости;

D) уровень технологичности по технологической себестоимости;

Е) технологическая материалоемкость.

 

133.1 По формуле Ку.т. = Тиби определяется:

А) технологическая себестоимость;

В) конструктивная материалоемкость;

С) уровень технологичности по трудоемкости;

D) уровень технологичности по технологической себестоимости;

Е) технологическая материалоемкость.

 

133.2 Какой параметр определяется выражением Ку.т. = Тиби:

А) технологическая себестоимость;

В) конструктивная материалоемкость;

С) уровень технологичности по трудоемкости;

D) уровень технологичности по технологической себестоимости;

Е) технологическая материалоемкость.

134.1 По формуле Мк = Мu/N определяется:

А) технологическая себестоимость;

В) конструктивная материалоемкость;

С) уровень технологичности по трудоемкости;

D) уровень технологичности по технологической себестоимости;

Е) технологическая материалоемкость.

 

134.2 Какой параметр определяется выражением Мк = Мu/N:

А) технологическая себестоимость;

В) конструктивная материалоемкость;

С) уровень технологичности по трудоемкости;

D) уровень технологичности по технологической себестоимости;

Е) технологическая материалоемкость.

 

135.1 По формуле Км = тд/тз определяется:

А) технологическая себестоимость;

В) конструктивная материалоемкость;

С) уровень технологичности по трудоемкости;

D) уровень технологичности по технологической себестоимости;

Е) технологическая материалоемкость.

 

135.2 Какой параметр определяется выражением Км = тд/тз:

А) технологическая себестоимость;

В) конструктивная материалоемкость;

С) уровень технологичности по трудоемкости;

D) уровень технологичности по технологической себестоимости;

Е) технологическая материалоемкость.

 

136.1 По формуле Zimin = 2(Rzi-1 + Ti-1 + Öt2i-1 + D2yi) определяется:

А) минимальный операционный припуск для тел вращения;

В) общая погрешность обработки;

С) минимальный операционный припуск для плоских тел;

D) коэффициент закрепления операций;

Е) такт выпуска.

 

136.2 Какой параметр определяется выражением Zimin = 2(Rzi-1 + Ti-1 + Öt2i-1 + D2yi):

А) минимальный операционный припуск для тел вращения;

В) общая погрешность обработки;

С) минимальный операционный припуск для плоских тел;

D) коэффициент закрепления операций;

Е) такт выпуска.

 

137.1 По формуле Zimin = Rzi-1 + Ti-1 + ti-1 + Dyi определяется:

А) минимальный операционный припуск для тел вращения;

В) общая погрешность обработки;

С) минимальный операционный припуск для плоских тел;

D) коэффициент закрепления операций;

Е) такт выпуска.

 

137.2 Какой параметр определяется выражением Zimin = Rzi-1 + Ti-1 + ti-1 + Dyi:

А) минимальный операционный припуск для тел вращения;

В) общая погрешность обработки;

С) минимальный операционный припуск для плоских тел;

D) коэффициент закрепления операций;

Е) такт выпуска.

 

138.1 По формуле Кзо =ЧТО/ЧРМ определяется:

А) минимальный операционный припуск для тел вращения;

В) общая погрешность обработки;

С) минимальный операционный припуск для плоских тел;

D) коэффициент закрепления операций;

Е) такт выпуска.

 

138.2 Какой параметр определяется выражением Кзо =ЧТО/ЧРМ:

А) минимальный операционный припуск для тел вращения;

В) общая погрешность обработки;

С) минимальный операционный припуск для плоских тел;

D) коэффициент закрепления операций;

Е) такт выпуска.

 

139.1 По формуле t = 60Fd/N определяется:

А) минимальный операционный припуск для тел вращения;

В) общая погрешность обработки;

С) минимальный операционный припуск для плоских тел;

D) коэффициент закрепления операций;

Е) такт выпуска.

 

139.2 Какой параметр определяется выражением t = 60Fd/N:

А) минимальный операционный припуск для тел вращения;

В) общая погрешность обработки;

С) минимальный операционный припуск для плоских тел;

D) коэффициент закрепления операций;

Е) такт выпуска.

 

140.1 По формуле Do = Dс ± D определяется:

А) минимальный операционный припуск для тел вращения;

В) общая погрешность обработки;

С) минимальный операционный припуск для плоских тел;

D) коэффициент закрепления операций;

Е) такт выпуска.

 

140.2 Какой параметр определяется выражением Do = Dс ± D:

А) минимальный операционный припуск для тел вращения;

В) общая погрешность обработки;

С) минимальный операционный припуск для плоских тел;

D) коэффициент закрепления операций;

Е) такт выпуска.

 

141.1 Изделие, составные части которого подлежат соединению на предприятии-изготовителе, это:

А) деталь;

В) сборочная единица;

С) комплект;

D) комплекс;

Е) рабочий ход.

 

141.2 Предмет конечной стадии производства, составные части которого подлежат соединению на предприятии-изготовителе, это:

А) деталь;

В) сборочная единица;

С) комплект;

D) комплекс;

Е) рабочий ход

 

142.1 Изделие, изготовленное из однородного материала без применения сборочных операций, это:

А) деталь;

В) сборочная единица;

С) комплект;

D) комплекс;

Е) рабочий ход.

 

142.2 Предмет конечной стадии производства, изготовленный из однородного материала без применения сборочных операций, это:

А) деталь;

В) сборочная единица;

С) комплект;

D) комплекс;

Е) рабочий ход.

 

143.1 Изделия, не соединённые на предприятии-изготовителе, но предназначенные для выполнения взаимосвязанных эксплуатационных функций, это:

А) деталь;

В) сборочная единица;

С) комплект;

D) комплекс;

Е) рабочий ход.

 

143.2 Предметы конечной стадии производства, не соединённые на предприятии-изготовителе, но предназначенные для выполнения взаимосвязанных эксплуатационных функций, это:

А) деталь;

В) сборочная единица;

С) комплект;

D) комплекс;

Е) рабочий ход.


144.1 Изделия, не подлежащие соединению и представляющие собой набор изделий вспомогательного характера, это:

А) деталь;

В) сборочная единица;

С) комплект;

D) комплекс;

Е) рабочий ход.

 

144.2 Предметы конечной стадии производства, не подлежащие соединению и представляющие собой набор изделий вспомогательного характера, это:

А) деталь;

В) сборочная единица;

С) комплект;

D) комплекс;

Е) рабочий ход.

 

145.1 Часть перехода, заключающаяся в однократном перемещении инструмента относительно заготовки сопровождающееся обработкой, это:

А) деталь;

В) сборочная единица;

С) комплект;

D) комплекс;

Е) рабочий ход.

 

145.2 Однократное перемещение инструмента относительно заготовки сопровождающееся обработкой, это:

А) деталь;

В) сборочная единица;

С) комплект;

D) комплекс;

Е) рабочий ход.

 

146.1 Отношение радиальной составляющей силы резания к смещению лезвия инструмента, это:

А) квалитет;

В) волнистость;

С) податливость;

D) шероховатость;

Е) жесткость системы СПИД.

 

146.2 Отношение Рус, это:

А) квалитет;

В) волнистость;

С) податливость;

Д) шероховатость;

Е) жесткость системы СПИД.

 

147.1 Совокупность неровностей, образующих микрорельеф поверхности, это:

А) квалитет;

В) волнистость;

С) податливость;

D) шероховатость;

Е) жесткость системы СПИД.

 

147.2 Каким термином характеризуется микрорельеф поверхности:

А) квалитет;

В) волнистость;

С) податливость;

D) шероховатость;

Е) жесткость системы СПИД.

 

148.1 Величина, обратная отношению радиальной составляющей силы резания к смещению лезвия инструмента, это:

А) квалитет;

В) волнистость;

С) податливость;

D) шероховатость;

Е) жесткость системы СПИД.

 

148.2 Что определяется отношением – 1/γс

А) квалитет;

В) волнистость;

С) податливость;

D) шероховатость;

Е) жесткость системы СПИД.

 

149.1 Периодически повторяющиеся возвышения с шагом, превышающим длину участка измерения шероховатости, это:



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2019-08-04 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: