Критерий согласия Пирсона




Предположим, что выполнено измерений некоторой случайной величины ξ: ,..., , (4.4)

и есть основания полагать, что результаты распределены нормально с плотностью вероятности

. (4.5)

Параметры закона распределения и σ обычно неизвестны. Вместо неизвестных параметров подставляют значения их оценок, которые вычисляют по следующим формулам:

, (4.6)

. (4.7)

 

В качестве критерия проверки выдвинутой гипотезы примем критерий согласия Пирсона (критерий согласия “хи- квадрат”)

, (4.8)

где – число интервалов, на которые разбито выборочное распределение, - частоты эмпирического распределения; – частоты теоретического распределения. Из формулы вытекает, что критерий характеризует близость эмпирического и теоретического распределений: чем меньше различаются и , тем меньше значение χ2.

 

Доказано, что при закон распределения случайной величины (4.8) независимо от того, какому закону распределения подчинена генеральная совокупность, стремится к закону распределения χ2 с степенями свободы. Число степеней свободы определяется равенством , где - число частичных интервалов; – число параметров предполагаемого распределения, которые были оценены. Для нормального распределения оцениваются два параметра (математическое ожидание и среднее квадратическое отклонение), поэтому .

В соответствии с процедурой проверки гипотезы следует вычислить наблюдаемое значение критерия. Чтобы вычислить частоты эмпирического распределения, весь интервал наблюдаемых значений делят на частичных интервалов (бинов) точками :

. (4.9)

определяют, подсчитав число измерений (4.4), которые попадают в - й интервал .

Используя теоретический закон распределения (4.5) можно рассчитать ожидаемое число результатов измерений для каждого интервала . Вероятность того, что результат одного измерения попадает в интервал , равна

, (4.10)

где – интегральный закон нормального распределения: . Учитывая, что функция распределения с параметрами и σ связана со стандартной нормальной функцией формулой , соотношение (4.10) можно записать в следующем виде:

. (4.11)

 

Поскольку проводится не одно, а измерений и эти измерения независимы, то их можно рассматривать как испытаний Бернулли, в которых “успехом” считается попадание результата измерения в интервал . Тогда числа вычисляются по формуле

(4.12)

(математическое ожидание числа “успехов” при испытаниях).

Для заданного уровня значимости по таблицам определяют критическое значение критерия. Сравнивая наблюдаемое и критическое значения критерия делают, вывод о соответствии экспериментальных данных предполагаемому закону распределения.

Пример 4.1. Проверить с помощью критерия χ2 при уровне значимости 0,05 гипотезу о том, что выборка объема , представленная интервальным вариационным рядом в таблице 4.4, извлечена из нормальной генеральной совокупности.

Таблица 4.4

Номер интервала i Границы интервала Частота
  0 – 2  
  2 – 4  
  4 –6  
  6 – 8  
  8 – 10  

Решение. 1. Сформулируем нулевую и альтернативную гипотезы: H0 – эмпирическое распределение соответствует нормальному; H1 - эмпирическое распределение не соответствует нормальному.

Для проверки нулевой гипотезы необходимо рассчитать наблюдаемое значение критерия χ2набл по формуле (4.8) и сравнить его с критическим значением χ2кр.

2. Определим параметры предполагаемого (теоретического) нормального закона распределения.

Найдем середины интервалов и относительные частоты . Получим следующие значения:

         

 

 

Оценку математического ожидания найдем по формуле (4.1):

 

.

 

Оценки дисперсии и стандартного отклонения вычислим по формулам (4.2) и (4.3):

 

 

;

 

.

 

3. Выполним расчет теоретических частот по формуле (4.12). Для вычисления вероятностей по формуле (4.11) воспользуемся таблицей В Приложения со значениями нормальной стандартной функции распределения. При этом наименьшее значение, т. е. , полагаем равным , а наибольшее, т.е. , полагаем равным . Последовательно находим для интервала (-∞, 2)

и ;

для интервала находим

и ;

для интервала (4,6) соответственно:

;

для интервала (6,8):

и ;

для интервала вычислим

;

.

4. По формуле (4.8) найдем значение :

.

5. По таблице квантилей распределения χ2 (см. таблицу С Приложения) с числом степеней свободы находим, что χ2кр = 6,0 для .

Поскольку (), то можно считать, что гипотеза о нормальном распределении генеральной совокупности не противоречит опытным данным.

 



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2019-05-16 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: