Дифференцировка в процессе развития. Генетические и негенетические механизмы дифференцировки.




Дифференцировка. Детерминированные клетки постепенно вступают на путь развития (неспециализированные эмбриональные клетки превращаются в дифференцированные клетки организма). Дифференцированные клетки в отличие от детерминированных обладают специальными морфологическими и функциональными организациями. В них происходят строго определенные биохимические реакции и синтез специальных белков.

Клети печени – альбумин.

Клетки эпидермиса кожи – кератин.

Мышцы – актин, миозин, миелин, миоглобин.

Как правило, дифференциация происходит в эмбриональном периоде и приводит к необратимым изменениям полипотентных клеток эмбриона.

1939 год Томас Морган выдвинул гипотезу: «дифференцировка клеток связана с активностью разных генов одного и того же генома». В настоящее время известно, что в дифференцированных клетках работает около 10% генов, а остальные неактивны. В силу этого в разных типах специализированных клеток функционируют свои определенные гены. Специальными опытами по пересадки ядер из клеток кишечника головастика в безъядерную яйцеклетку было доказано, что в дифференцированных клетках сохраняется генетический материал и прекращение функционирования определенных генов обратимо. Из яйца лягушки удаляли ядро, брали ядро из клетки кишечника головастика. Развитие не происходило, иногда эмбриогенез происходил нормально. Строение взрослой лягушки полностью определялось ядром.

На функционирование генов в процессе развития многоклеточного организма оказывают влияние сложные и непрерывные взаимодействия ядра и цитоплазмы и межклеточные взаимодействия.

Регуляция дифференцировки происходит на уровне транскрипции и на уроне трансляции.

Уровни регуляции дифференцировки клеток.

1. На уровне транскрипции.

- система оперона

-участие белков – гистонов, которые образуют комплекс с ДНК.

Участки ДНК, покрытые гистоном, неспособны к транскрипции, а участки без гистоновых белков транскрибируются. Таким образом, белки участвуют в контроле над считываемыми генами.

Гипотеза дифференциальной активности генов: «Предположение о том, что в разных генах дифференцированных клеток репрессированы (закрыты для считывания) разные участки ДНК и поэтому синтезируются разные виды м-РНК».

2. На уровне трансляции.

На ранних стадиях эмбрионального развития весь белковый синтез обеспечивается матрицами, созданными в яйцеклетке до оплодотворения под управлением ее генома. Синтез и-РНК не происходит, меняется характер синтеза белка. У разных животных синтез включается по-разному. У амфибий синтез и-РНК после 10 деления, синтез т-РНК на стадии бластулы. У человека синтез и-РНК после 2го деления. Не все молекулы и-РНК, находящиеся в яйцеклетке одновременно используются для синтеза полипептидов, белков. Часть из них некоторое время молчит.

Морфогенез – образование формы, принятие новой формы. Образование формы чаще всего происходит в результате дифференциального роста. В основе морфогенеза лежит организованное движение клеток и групп клеток. В результате перемещения клетки попадают в новую среду. Процесс происходит во времени и пространстве.

Дифференцированные клетки не могут существовать самостоятельно, кооперируются с другими клетками, образуя ткани и органы. В образовании органов важно поведение клеток, которое зависит от клеточных мембран.

Клеточная мембрана играет роль в осуществлении

-клеточных контактов

-адгезии

-агрегации.

Для формирования органа необходимо присутствие в определенном количестве всех клеток, обладающих общим органным свойством.

Смешивали клетки глазных зачатков и хряща. Раковые клетки не способны к сегрегации и неотделимы от нормальных. Остальные клетки подвержены сегрегации.

64. Детерминация, ее изменения в процессе развития. Презумптивные зачатки.
Под детерминацией подразумевается предназначение клеток к тому, чтобы в конечном счете дифференцироваться именно в этот, а не какой-нибудь иной клеточный тип. Никаких явных структурных или функциональных изменений в клетках на этой стадии не происходит. Клеточный материал считают детерминированным, начиная со стадии, когда он впервые обнаруживает способность при пересадке в чуждое место дифференцироваться в тот тип клеток, который из него образуется при нормальном развитии.

Детерминация отдельных клеток и клеточных комплексов неразрывно связана с детерминацией зачатков органов и структур организма, которая предшествует дифференциации частей (структур) развивающегося организма. При этом первоначально детерминируется общее - целый зачаток, а затем определяется судьба отдельных клеток. Под детерминацией частей организма также понимают возникновение качественных различий, которые предопределяют дальнейшую судьбу этих частей, прежде чем возникают морфологические различия между ними (дифференциация).

В последнее время получил распространение термин коммитация. По сути, он означает то же, что и детерминация. Термин «детерминация» относят преимущественно к ранним эмбриональным стадиям развития, а о коммитации говорят чаще всего применительно к отдельным клеткам, судьба которых определяется на относительно поздних стадиях развития. Так, например, говорят о коммитации различных типов клеток крови, возникших из первичной (родоначальной стволовой) кроветворной клетки.

Предшествующая процессам дифференцировки, дифференциации и морфогенеза, наблюдаемым на протяжении всего развития, детерминация также реализуется на протяжении всего онтогенеза особи. Объем детерминируемых областей с возрастом уменьшается. В раннем эмбриогенезе

детерминируются области, соответствующие зародышевым листкам, затем определяется общий план строения организма зародыша. На более продвинутых фазах эмбрионального развития и даже в постэмбриональном периоде под действие этих процессов подпадают более ограниченные области - зачатки органов или отдельных структур организма.

Детерминированность элементов развивающегося организма тесно связана с понятием потенций развития. Потенции (проспективные потенции) - это все возможные направления развития элементов организма, которые могли бы осуществиться при определенных условиях, в том числе и отличных от нормальных. То, во что данный элемент развивается при нормальных условиях, называют его проспективным (презум-птивным) значением. Очевидно, что проспективные потенции некоторой части зародыша не могут быть уже ее проспективного значения.

На каждом этапе развития элементы организма - отдельные клетки, клеточные комплексы, зачатки органов и структур характеризуются определенными потенциями. В ходе развития организма по мере усиления детерминации происходит изменение (сужение) потенций его элементов. Другими словами, наблюдается рестрикция - ограничение возможностей выбора путей развития, предоставляемых развивающемуся элементу.

65.Критические периоды онтогенеза у человека. Классификация пороков развития у человека. Методы дородовой диагностики.
Критическими называются периоды онтогенеза, когда развивающийся организм особенно подвержен действию различных вредящих факторов, в первую очередь, стрессов, химических препаратов, различного рода излучений и др. К критическим периодам относятся:
1) овогенез и сперматогенез — период развития половых клеток;
2) оплодотворение;
3) имплантация зародыша (7-8-есутки развития);
4) смыкание нервной трубки (4-я неделя развития);
5) образование комплекса осевых зачатков органов и формирование плаценты (3-8-я недели развития);
6) стадия усиленного роста головного мозга и дифференцировки нервной ткани (15-22-я недели);
7) дифференцировка полового аппарата и формирование основных функциональных систем (20-24-янеделя);
8) рождение;
9) период новорожденности (до1 года);
10) половое созревание (11-16 лет).

В зависимости от причины все пороки развития делят на:
•наследственные,
•экзогенные,
•мультифакториальные.
В зависимости от стадии, на которой проявляются нарушения пороки подразделяют на:
•Гаметопатии – нарушения на стадии зиготы
•Бластопатии - нарушения на стадии бластулы, как правило очень грубые развитие дальше не идёт и зародыш погибает
•Эмбриопатии – возникают в период от 15 сут до 8 недель – составляют основу врождённых пороков
•Фетопатии – нарушения возникающее после 10 недель, представляют как правило не грубые нарушения, а отклонения от общего типа: в виде снижения массы, задержки интеллектуального развития;

Клиническое значение имеют эмбриопатии и фетопатии.

 

В зависимости от последовательно возникновения различают:
•Первичные – обусловленные непосредственным действием тератогенного фактора
•Вторичные – являются осложнениями первичных
По распространениюв организме первичные пороки подразделяются на:
•Изолированные или одиночные
•Системные в пределах одной системы
•Множественные в органах двух и более систем
В основу классификации ВПР(врожденные пороки развития) положен анатомо-физиологический принцип – по месту локализации
По клеточным механизмам, которые нарушены выделяют пороки возникшие в результате:
•нарушения размножения клеток
•миграции клеток
•сортировки клеток
•дифференцировки
•гибели клеток

Эти нарушения приводят к гипертрофиям, гипотрофиям, эктопиям, дисплазиям,агенезии аплазии, гетероплазии, дисхронии.

По филогенетической значимости можно подразделить на:
•филогенетические – приводят к возврату к предковым формам, пороки напоминают органы животных, их называют предковыми или атавистическими,например,незаращение дужек позвоночных позвонков, шейные, и поясничные рёбра, несращение твёрдого нёба, персистирование висцеральных дуг
•нефилогенетические– не имеют аналогов у нормальных предковых или современных позвоночных, не отражают филогенетических закономерностей и являются результатом нарушения эмбриогенеза, например: двойниковые уродства, эмбриональные опухоли,

 

Типы ВПР
Принято выделять 4 типа ВПР:
1. Мальформация - морфологический дефект органа, части органа, или большого участка тела в результате внутреннего нарушения процесса развития (генетические факторы).

 

2. Дизрупция - морфологический дефект органа, части органа или большого участка тела в результате внешнего препятствия или какого-либо воздействия на изначально нормальный процесс развития (тератогенные факторы и нарушение имплантации).
3. Деформация - нарушение формы, вида или положения части тела, обусловленные механическими воздействиями.
4. Дисплазия - нарушенная организация клеток в ткани и ее морфологический результат (процесс и следствие дисгистогенеза).
Элиминация эмбрионов и плодов является одним из методов профилактики наследственных болезней. Прерывание беременности с целью предупреждения этих болезней у потомства возможно только при условии пренатальной диагностики в положенные сроки (до 22 недели).

 

Пренатальная диагностика наследственных болезней – это комплексная быстро развивающаяся область медицины, использующая комплекс методов для своевременного выявления генетических патологий у эмбрионов и плодов. При медико-генетическом консультировании на пренатальную диагностику направляют женщин по следующим показаниям: возраст 35 лет и старше (мужчин 45 лет и старше), наличие в семье или в популяции пренатально выявляемой наследственной болезни, неблагоприятный акушерский анамнез (повторные спонтанные прерывания беременности или рождение ребенка с врожденными пороками развития), сахарный диабет, эпилепсия, инфекция у беременной, лекарственная терапия, контакты с тератогенными факторами.
Методы пренатальной диагностики можно разделить на п росеивающие, неинвазивные и инвазивные. Для каждого метода есть показания и противопоказания, разрешающие возможности и осложнения. Выбор метода и вся тактика пренатальной диагностики должны быть строго индивидуальны.
•Просеивающие методы позволяют выделить женщин, имеющих риск рождения ребенка с наследственной или врожденной патологией. К просеивающим методам относятся: определение в сыворотке крови беременной веществ, получивших название сывороточных маркеров матери (α-фетопротеина – АФП, хорионического гонадотропина человека – ХГЧ, несвязанного эстриола, ассоциированного с беременностью плазменного белка А – РААР-А) и выделение клеток или ДНК плода из организма матери.методы используются для ранней диагностики синдрома Дауна.

 

•Неинвазивные методы не предусматривают оперативного вмешательства. Фактически единственным неинвазивным методом сейчас является ультразвуковое исследование. УЗИ используют с 6-8 недели беременности, сроки проведения регламентированы приказом Министерства здравоохранения: 10-13, 20-22 и 30-32 недели беременности. Метод позволяет выявить как врожденные пороки развития конечностей, ЦНС, сердечно-сосудистой, пищеварительной и мочеполовой систем, так и определить функциональное состояние плода, плаценты, пуповины и оболочек. В последнее время предложено использовать для пренатальной диагностики метод магнито-резонансной томографии (МРТ), которую можно применять в течение всей беременности.
•Инвазивные методы служат для получения клеток и тканей эмбриона, плода и провизорных органов в любом периоде беременности. Полученный биоптат подлежит лабораторному исследованию на предмет выявления наследственных болезней. К инвазивным методам относятся:

- хорион- и плацентобиопсия (применяются для получения небольшого количества ворсин хориона или кусочков плаценты в период с 7 по 16 неделю беременности);
- амниоцентез (прокол плодного пузыря с целью получения околоплодной жидкости и находящихся в ней слущенных клеток амниона и плода; проводится на 15-18 неделе беременности);
- кордоцентез (взятие крови из пуповины с 20-й недели беременности);
- биопсия тканей плода (проводится биопсия кожи или мышц во втором триместре беременности под контролем УЗИ);
- фетоскопия (введения зонда и осмотр плода на 18-23 неделе; используется редко, только при особых показаниях, так как может быть заменена более безопасным УЗИ).
-Анализ крови крови.

66. Регенерация, её сущность и виды. Механизмы регенерации. Клеточные источники регенерации.
Регенерация
- процесс восстановления организмом утраченных или поврежденных структур. Регенерация поддерживает строение и функции организма, его целостность. Различают два вида регенерации: физиологическую и репаративную. Восстановление органов, тканей, клеток или внутриклеточных структур после разрушения их в процессе жизнедеятельности организма называют физиологической регенерацией. Восстановление структур после травмы или действия других повреждающих факторов называют репаративной регенерацией. При регенерации происходят такие процессы, как детерминация, дифференцировка, рост, интеграция и др., сходные с процессами, имеющими место в эмбриональном развитии.

Физиологическая регенерация представляет собой процесс обновления функционирующих структур организма. Благодаря физиологической регенерации поддерживается структурный гомеостаз и обеспечивается возможность постоянного выполнения органами их функций. Примером физиологической регенерации на внутриклеточном уровне являются процессы восстановления субклеточных структур в клетках всех тканей и органов. Примерами физиологической регенерации на клеточном и тканевом уровнях являются обновление эпидермиса кожи, роговицы глаза, эпителия слизистой кишечника, клеток периферической крови и др. Обновляются производные эпидермиса — волосы и ногти. Это так называемая пролиферативная регенерация, т.е. восполнение численности клеток за счет их деления. Во многих тканях существуют специальные камбиальные клетки и очаги их пролиферации. В физиологической регенерации выделяют две фазы: разрушительную и восстановительную. Полагают, что продукты распада части клеток стимулируют пролиферацию других. Большую роль в регуляции клеточного обновления играют гормоны.

Репаративная ( от лат. reparatio — восстановление) регенерация наступает после повреждения ткани или органа. Существует несколько разновидностей или способов репаративной регенерации. К ним относят эпиморфоз, морфаллаксис, заживление эпителиальных ран, регенерационную гипертрофию, компенсаторную гипертрофию.

Эпиморфоз представляет собой наиболее очевидный способ регенерации, заключающийся в отрастании нового органа от ампутационной поверхности.

Морфаллаксис — это регенерация путем перестройки регенерирующего участка. Примером служит регенерация гидры из кольца, вырезанного из середины ее тела.

Регенерационная гипертрофия относится к внутренним органам. Этот способ регенерации заключается в увеличении размеров остатка органа без восстановления исходной формы. Иллюстрацией служит регенерация печени позвоночных, в том числе млекопитающих. При краевом ранении печени удаленная часть органа никогда не восстанавливается. Раневая поверхность заживает. В то же время внутри оставшейся части усиливается размножение клеток (гиперплазия) и в течение двух недель после удаления 2/3 печени восстанавливаются исходные масса и объем, но не форма. Внутренняя структура печени оказывается нормальной, дольки имеют типичную для них величину. Функция печени также возвращается к норме. Компенсаторная гипертрофия заключается в изменениях в одном из органов при нарушении в другом, относящемся к той же системе органов. Примером является гипертрофия в одной из почек при удалении другой или увеличение лимфатических узлов при удалении селезенки. Последние два способа отличаются местом регенерации, но механизмы их одинаковы: гиперплазия и гипертрофия.

Механизмы регуляции регенерации:

1) гуморальные факторы – кейлоны, которые представляют собой гликопротеины и их вырабатывают зрелые неповрежденные клетки (эпителиальные, клетки крови и т. д.). Эти вещества выбрасываются в кровь и сдерживают пролиферацию, повышают синтез ДНК и снижают митотическую активность. Антикейлоны (мезенхимальный фактор) вырабатываются в соединительной ткани (содержат белки и сиаловые кислоты);

2) гормональные факторы:

а) соматотропный гормон гипофиза стимулирует пролиферацию и активную регенерацию;

б) минералокортикоиды стимулируют, а глюкокортикостероиды сдерживают воздействие на регенерацию;

в) гормоны щитовидной железы стимулируют процесс регенерации;

3) иммунные факторы – лимфоциты выполняют информационную роль, Т-лимфоциты стимулируют эффект заживления, а В-лимфоциты угнетают;

4) нервные механизмы регуляции прежде всего связаны с трофической функцией нервной системы;

5) функциональные механизмы – с функциональным запасом органа и (или) ткани.

Клеточные источники регенерации.
1. Наличие малодифференцированных клеток, сохранившихся в ходе эмбриогенеза (стволовые, камбиальные). Предполагается, что небольшая часть стволовых клеток сохраняется в виде резерва во взрослом организме. Однако отчетливо такой способ регенерации доказан для низших животных – кишечнополостных и червей. У кишечнополостных есть интерстициальные клетки, расположенные в обоих зародышевых листках поблизости от базальной мембраны. Это резервные камбиальные элементы, которые при регенерации скапливаются вблизи раневой поверхности, и из них могут возникать все остальные типы клеток. Например, у гидры из них возникают эпителиально-мышечные, нервные, железистые и стрекательные клетки. У плоских червей источником регенерационного материала служат необласты.

 

2. Трансдифференцировка и метаплазия при регенерации. При трансдифференцировке происходит превращение одного типа клеток в другие, а при метаплазии происходит превращение одного зародышевого листка в производные другого. Подобные процессы описаны у кольчатых червей, немертин, кишечнополостных, асцидий. Явление метаплазии наблюдается при регенерации у асцидий. Доказано, что целая асцидия может восстановиться из участка жаберной корзинки, которая является органом эктодермального происхождения. Трансдифференцировки, не выходящие за пределы одного зародышевого листка, довольно широко распространены среди позвоночных животных. Например, у хвостатых амфибий и осетровых рыб удаленная сетчатка глаза может регенерировать из клеток пигментного эпителия и цилиарного зачатка. В этом случае происходит глубокая перестройка клеток, которая заключается в пробуждении в них митотической активности, а затем и синтеза белков, специфичных для сетчатки.

 

3. Дедифференцировка клеток дефинитивных тканей – это путь образования малодифференцированных клеток с последующей редифференцировкой. Этот способ хорошо продемонстрирован на примере регенерации конечности хвостатых амфибий. При ампутации конечности происходит повреждение многих типов тканей – эпителия, соединительной, мышечной и костной тканей. После ампутации конечности эпидермис наползает на рану и закрывает ее. В результате наступает дедифференцировка структур: от мышц и кости отщепляются клетки, они теряют типичное для них строение. В последующем к этим клеткам присоединяются клетки соединительной ткани и кожа, которая образует компактную белую массу – бластему. У поврежденного конца конечности скапливается большая масса новых клеток, образовавшаяся из дедифференцированных структур. После достижения бластемой определенного размера дедифференцировка костей и мышц прекращается. Бластема активно растет за счет размножения клеток, вначале она имеет коническую форму, затем кончик ее уплощается в дорзовентральном направлении. На конце бластемы появляются зачатки пальцев, а клетки внутри дают зачатки костей и мышц (редифференциация). За органогенезом следует гистологическая дифференциация. Конечность растет, достигает нормальных размеров, ее рост прекращается, и она становится неотличимой от обычной. Для нормального процесса регенерации необходимо сохранение иннервации. Нерв необходим только для начала регенерации. Если у соломандры перерезать нерв, идущий к конечности, то бластема не образуется и конечность не регенерирует. Если же регенерация началась, то нерв можно перерезать без ущерба для протекания данного процесса. Оказалось, что можно подвести конец нерва к разрезу в коже недалеко от конечности, тогда образуется бластема и конечность возникает в новом месте. Стимулом для образования конечности может служить не обычный импульс, а какой-то продукт нейросекреции, способствующий росту. С другой стороны, регенерацию можно подавить, облучив бластему рентгеновскими лучами (около 7 тыс. рентген). В этом случае бластема рассасывается.
При репаративной регенерации - источником могут являться или камбиальные клетки, или обычные клетки, которые прошли дедифференцировку после повреждения, или обычные клетки, которые проходят стадию активации перед делением. Стволовая клетка - это примитивная малодифференцированная клетка, которой присуща высокая способность к пролиферации. Стволовая клетка обладает плюрипотентностью и способна дифференцироваться в разных направлениях с образованием специализированных тканей. В тканях всех органов присутствуют резидентные (или региональные) стволовые клетки, они никогда не покидают данный орган (желудочки головного мозга, дно крипт кишечника). При необходимости резидентные стволовые клетки дают клетки любой ткани. Полагают, что стволовые клетки сохраняются у человека в течение всей жизни, но с возрастом их количество уменьшается.

Циркулирующие стволовые клетки присутствуют в мезенхимальной ткани, в клетках костного мозга.

При физиологической регенерации источником являются камбиальные клетки (стволовые недифференцированные клетки мальпигиевого слоя кожи, клетки крипт кишечника, кроветворная стволовая клетка).

67. Старение как этап онтогенеза. Биологическое значение старения. Проявление старения. Гипотезы старения.
Старость представляет собой стадию индивидуального развития, по достижении которой в организме наблюдаются закономерные изменения в физическом состоянии, внешнем виде, эмоциональной сфере.

Старческие изменения становятся очевидными и нарастают в пострепродуктивном периоде онтогенеза. Различают хронологический и биологический (физиологический) возраст. Согласно современной классификации, основанной на Состояние старости достигается благодаря изменениям, составляющим содержание процесса старения. Этот процесс захватывает все уровни структурной организации особи — молекулярный, субклеточный, клеточный, тканевой, органный. Суммарный результат многочисленных частных проявлений старения на уровне целостного организма заключается в нарастающем с возрастом снижении жизнеспособности особи, уменьшении эффективности приспособительных, гомеостатических механизмов.а оценке многих средних показателей состояния организма, людей, хронологический возраст которых достиг 60—74 лет, называют пожилыми, 75—89 лет —старыми, свыше 90 лет —долгожителями

В целом старение приводит к прогрессивному повышению вероятности смерти. Таким образом, биологический смысл старения заключается в том, что оно делает неизбежной смерть организма. Последняя же представляет собой универсальный способ ограничить участие многоклеточного организма в размножении. Без смерти не было бы смены поколений — одного из главных условий эволюционного процесса.

Геронтология знает не менее 500 гипотез, объясняющих и первопричину, и механизмы старения организма.

1) Некоторые авторы рассматривают старение как стохастический процесс возрастного накопления «ошибок», неизбежно случающихся в ходе обычных процессов жизнедеятельности, а также повреждений биологических механизмов под действием внутренних (спонтанные мутации) или внешних (ионизирующее облучение) факторов. Стохастичность обусловливается случайным характером изменений во времени и локализации в организме. В различных вариантах гипотез данного направления первостепенная роль отводится разным внутриклеточным структурам, от первичного повреждения которых зависят функциональные расстройства на клеточном, тканевом и органном уровнях. Прежде всего это генетический аппарат клеток (гипотеза соматических мутаций).

2) Второе направление представлено генетическими или программными гипотезами, согласно которым процесс старения находится под прямым генетическим контролем. Указанный контроль, согласно одним взглядам, осуществляется с помощью специальных генов. По другим взглядам, он связан с наличием специальных генетических программ, как это имеет место в отношении других стадий онтогенеза, например эмбриональной.

68. Старость и старение. Влияние генетических и средовых факторов на процесс старения. Гипотезы старения
Старость представляет собой стадию индивидуального развития, по достижении которой в организме наблюдаются закономерные изменения в физическом состоянии, внешнем виде, эмоциональной сфере.

Старческие изменения становятся очевидными и нарастают в пострепродуктивном периоде онтогенеза. Различают хронологический и биологический (физиологический) возраст. Согласно современной классификации, основанной на Состояние старости достигается благодаря изменениям, составляющим содержание процесса старения. Этот процесс захватывает все уровни структурной организации особи — молекулярный, субклеточный, клеточный, тканевой, органный. Суммарный результат многочисленных частных проявлений старения на уровне целостного организма заключается в нарастающем с возрастом снижении жизнеспособности особи, уменьшении эффективности приспособительных, гомеостатических механизмов.а оценке многих средних показателей состояния организма, людей, хронологический возраст которых достиг 60—74 лет, называют пожилыми, 75—89 лет —старыми, свыше 90 лет —долгожителями

В целом старение приводит к прогрессивному повышению вероятности смерти. Таким образом, биологический смысл старения заключается в том, что оно делает неизбежной смерть организма. Последняя же представляет собой универсальный способ ограничить участие многоклеточного организма в размножении. Без смерти не было бы смены поколений — одного из главных условий эволюционного процесса.

Генетика старения
Во-первых, максимальная продолжительность жизни ведет себя как видовой признак.
Во-вторых, величины продолжительности жизни у однояйцевых близнецов более близки(конкорданты), чем у разнояйцовых. Попарные различия по этому показателю составляют в среднем 14,5 года для первых и 18,7 года для вторых
В-третьих, описаны наследственные болезни с ранним проявлением признаков старости и одновременно резким сокращением продолжительности жизни. Например, при синдроме Хатчинсона-Гилфорда уже на первом году жизни отмечается задержка роста, раннее облысение, морщины, атеросклероз. Смерть в таком случае наступает в возрасте 30 лет.
В-четвертых, в лабораторных условиях путем близкородственного скрещивания получены инбредные линии плодовой мухи и мыши, существенно различающиеся по средней и максимальной продолжительности жизни. Гибриды 1-ого поколения от скрещивания родителей из разных короткоживущих линий живут дольше родителей, что расценивают как явление гетерозиса.
В-пятых, среди плодовых мух особи, гомозиготные по аллею зачаточных крыльев, имеют, меньшую продолжительность жизни, чем мухи дикого типа(плейотропия). У мыши обнаружено много примеров влияния отдельных генов на продолжительность жизни, причем в сторону снижения. Сходным примером у человека является мутация, приводящая к развитию синдрома Марфана и фенотипически проявляющаяся в дефектном развитии соединительной ткани.
В-шестых, для людей выявлена положительная связь между длительностью жизни родителей и потомков.
ВЫВОД: при отсутствие специальных генов или целой программы, прямо определяющих развитие старческих признаков, процесс старения находится тем не менее под генетическим контролем путем изменения его скорости. Существуют разные пути такого контроля. Во-первых, это плейотропное действие, свойственное многим генам. Во-вторых, со временем в генотипах соматических клеток, особенно в области регуляторных нуклеотидных последовательностей накапливаются мутации. Следствием этого становится нарастающее с возрастом нарушение работы внутриклеточных механизмов, процессов репликации, репарации, транскрипции ДНК. В-третьих, генетические влияния на скорость старения могут быть связаны с генами предрасположенности к хроническим заболеваниям, наследуемым по полигенному типу, таким как ишемическая болезнь сердца, атеросклероз, гипертония и др. Исследования на долгожителях показывает что их отличает повышенная устойчивость к хроническим заболеваниям, а время наступления таких болезней отсрочено.
Влияние условий жизни на процесс старения.
В процесс старения вовлекаются все структуры и функции организма. Важное свойство этого процесса-его гетерогенность. Также на старение влияют и социально-экономические условия. Понятие образа жизни в трогом смысле применимо лишь к человеку. Особенности питания связаны со скоростью старения. Контролируемая диета представляет собой важнейший фактор здорового долголетия.
Статистика показывает, что защитное действие семейного образа жизни распространяется на все возрасты и, во-вторых, проявляется в отношении подавляющего большинства причин смерти, включая сердечно-сосудистые заболевания, рак, туберкулез и тд.
С понятием экология мы связываем обычно совокупность абиотических и биотических факторов, действующих на организм в среде его обитания, т.е. внешние условия жизни. Но сходные по своей природе факторы, например микробные, могут действовать на организм и изнутри. Все это дает судить о эндоэкологии организма.
Гипотезы старения.
К ним в частности относятся гипотезы, связывающие старение с расходованием особого вещества клеточных ядер, страхом смерти, утратой некоторых невосполнимых веществ, получаемых организмом в момент оплодотворения, самоотравлением продуктами жизнедеятельности, токсичность продуктов, образуемых под действием микрофлоры тонкого кишечника.
Некоторые авторы рассматривают старение как стохастический процесс возрастного накопления мутация, а также повреждений биологических механизмов под действием внутренних или внешних факторов. Многие исследователи связывают старение с изменением строения и, следовательно, физико-химических и биологических свойств макромолекул: ДНК, РНК, белков хроматина и т.п.
Также есть гипотеза об износе структур, в диапазоне от макромолекул до организма в целом, приводящие в конце концов к состоянию несовместимым с жизнью.
Второе направление представлено генетическими или программными гипотезами, согласно которым процесс старения находится под прямым генетическим контролем. Контроль осуществляется с помощью специальных генов. Некоторые из этих гипотез основаны на допущении, что в организме функционируют биологические часы. Генетические программы-всегда результат эволюции, закрепляемый в генофонде вида вследствие естественного отбора.
Гипотеза феноптоза. Ее автор, В.П. Скулачев, исходит из допущения, что, если в природе существует на клеточном уровне апоптоз, то подобный процесс существует и на организменном уровне.

69.Биологический вид. Его критерии и реальность. Homo sapiens как биологический вид.
Вид - группа организмов, сходных по происхождению, обладающих сходными морфологическими,биохимическими,физиологическими признаками, занимающих определенную территорию, выполняющих определённую функцию в круговороте веществ и энергии, свободно скрещивающихся только между собой и оставляющих плодовитое потомство.

Критерии вида:

· морфологический(цвет глаз,размер сердца)

· биохимический(сходство белков)

· физиологический(сходство функционирования)

· географический(занимаемая территория,ареал)

· экологический(консумент,продуцент)

· генетический(кариотип)

Вид существует в виде популяций.

Челове́к разу́мный (лат. Homo sapiens) (в биологии) — видродаЛюди (Homo) из семейства гоминид в отряде приматов, единственный живущий в настоящее время. От современных человекообразных, помимо ряда анатомических особенностей, отличается значительной степенью развития материальной культуры (включая изготовление и использование орудий), способностью к членораздельной речи и абстрактному мышлению. Человек, как биологический вид — предмет исследования физической антропологии. Природа и сущность человека является предметом как философского, так и религиозного диспута.

70. Популяционная структура вида. Экологические и генетические характеристики популяции. Особенности человеческих популяций.
Каждый вид, занимая определенную территорию (ареал), представлен на ней системой популяций. Чем сложнее расчленена территория, занимаемая видом, тем больше возможностей для обособления отдельных популяций.

- Если члены вида постоянно перемещаются и перемешиваются на обширных пространствах, такой вид характеризуется небольшим числом крупных популяций.

- При слабо развитых способностях к перемещению в составе вида формируется множество мелких популяций, отражающих мозаичность ландшафта.

Экологические характеристики популяций:

1. Величина, оцениваемая по занимаемой территории (ареалу). Размер ареала зависит от радиусов индивидуальной активности организмов данного вида и особенности природных условий;

2. Численность особей.

3. Возрастной с



Поделиться:




Поиск по сайту

©2015-2025 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2018-09-16 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: