Человек воспринимает не все изменения окружающей среды, он не способен, например, ощущать действие ультразвука, рентгеновских лучей или радиоволн. Диапазон сенсорного восприятия человека ограничен имеющимися у него сенсорными системами, каждая из которых перерабатывает информацию о стимулах определенной физической природы. Сенсорная специфичность каждой системы определяется, прежде всего, свойствами входящих в нее рецепторов.
17.1.1. Классификации рецепторов
Рецепторы различают по специфической чувствительности к разным стимулам, по строению и местоположению. Специфическая чувствительность рецепторов к раздражителям различной природы (механическим, химическим, температурным и т. д.) обусловлена разными механизмами управления ионными каналами плазматических мембран, состояние которых определяет возникновение рецепторного потенциала и переход от физиологического покоя к возбуждению. Стимулы, к которым рецепторы наиболее чувствительны, называются адекватными (лат. adaequatus — приравненный).
Механорецепторы возбуждаются сильнее всего вследствие деформации их клеточной мебраны при давлении или растяжении, к ним относятся тактильные рецепторы кожи, проприоцепторы мышц и сухожилий, слуховые и вестибулярные рецепторы во внутреннем ухе, барорецепторы и во- люморецепторы, находящиеся во внутренних органах и кровеносных сосудах. Хеморецепторы возбуждаются вследствие присоединения к ним определенных химических молекул, они представлены обонятельными и вкусовыми рецепторами, а также хемочувствительными рецепторами внутренних органов и кровеносных сосудов. Для расположенных в сетчатке глаза фоторецепторов адекватным раздражителем являются поглощенные ими кванты света, для терморецепторов (холодовых и тепловых) — изменения температуры.
|
Большинство рецепторов возбуждаются в ответ на действие стимулов только одной физической природы и поэтому относятся к мономодалъным. Их можно возбудить и некоторыми неадекватными раздражителями, например фоторецепторы — сильным давлением на глазное яблоко, а вкусовые рецепторы — прикосновением языка к контактам гальванической батареи, но получить качественно различаемые ощущения в таких случаях невозможно. Наряду с мономодальными существуют полимодалъные рецепторы, адекватными стимулами которых могут служить раздражители разной природы. К такому типу рецепторов принадлежат некоторые болевые рецепторы, или ноцицепторы (лат. nocens — вредный), которые можно возбудить механическими, термическими и химическими стимулами. Полимодальность имеется у терморецепторов, реагирующих на повышение концентрации калия во внеклеточном пространстве так же, как на повышение температуры.
В зависимости от строения рецепторов их подразделяют на первичные, или первичночувствующие, которые являются специализированными окончаниями чувствительного нейрона, и вторичные, или вторичночувствую- щие, представляющие собой клетки эпителиального происхождения, способные к образованию рецепторного потенциала в ответ на действие адекватного стимула. Первичночувствующие рецепторы могут сами генерировать потенциалы действия в ответ на раздражение адекватным стимулом, если величина их рецепторного потенциала достигнет пороговой величины. К ним относятся обонятельные рецепторы, большинство механорецепторов кожи, терморецепторы, болевые рецепторы или ноцицепторы, проприоцепторы и большинство интерорецепторов внутренних органов.
|
Вторичночувствующие рецепторы отвечают на действие раздражителя лишь возникновением рецепторного потенциала, от величины которого зависит количество выделяемого этими клетками медиатора. С его помощью вторичные рецепторы действуют на нервные окончания чувствительных нейронов, генерирующих потенциалы действия в зависимости от количества медиатора, выделившегося из вторичночувствующих рецепторов. Вторичные рецепторы представлены вкусовыми, слуховыми и вестибулярными рецепторами, а также хемочувствительными клетками синокаротидного клубочка. Фоторецепторы сетчатки, имеющие общее происхождение с нервными клетками, чаще относят к первичным рецепторам, но отсутствие у них способности генерировать потенциалы действия указывает на их сходство с вторичными рецепторами.
В зависимости от источника адекватных стимулов рецепторы подразделяют на наружные и внутренние, или экстерорецепторы и интерорецепто- ры; первые стимулируются при действии раздражителей внешней среды (электромагнитные и звуковые волны, давление, действие пахучих молекул), а вторые — внутренней (к этому типу рецепторов относят не только висцерорецепторы внутренних органов, но также проприоцепторы и вестибулярные рецепторы). В зависимости от того, действует стимул на расстоянии или непосредственно на рецепторы, их подразделяют еще на дистантные и контактные.
|
17.1.2. Преобразование энергии раздражителя в рецепторах
В результате действия адекватного раздражителя у большинства рецепторов увеличивается проницаемость клеточной мембраны для катионов, что приводит к ее деполяризации. Исключением из общего правила являются фоторецепторы, где после поглощения энергии квантов света в связи особенностями управления ионными каналами (см. раздел 17.3.2.2) происходит гиперполяризация мембраны. Изменение величины мембранного потенциала рецепторов в ответ на действие стимула представляет собой рецепторный потенциал — входной сигнал первичных сенсорных нейронов. Если величина рецепторного потенциала достигнет критического уровня деполяризации или превысит его, генерируются потенциалы действия, с помощью которых сенсорные нейройы передают в центральную нервную систему информацию о действующих стимулах.
Генерация потенциалов действия происходит в ближайшем к рецепторам перехвате Ранвье миелинизированных волокон или ближайшей к рецепторам части мембраны безмиелинового волокна. Минимальная сила адекватного стимула, достаточная для генерации потенциалов действия в первичном сенсорном нейроне, определяется как его абсолютный порог. Минимальный прирост силы стимула, сопровождающийся значимым изменением реакции сенсорного нейрона, представляет собой дифференциальный порог его чувствительности.
Информация о силе действующего на рецепторы стимула кодируется двумя способами: частотой потенциалов действия, возникающих в сенсорном нейроне (частотное кодирование), и числом сенсорных нейронов, возбудившихся в ответ на действие стимула. При увеличении силы действующего на рецепторы раздражителя повышается амплитуда рецепторного потенциала, что, как правило, сопровождается увеличением частоты потенциалов действия в сенсорном нейроне первого порядка. Чем шире имеющийся частотный диапазон потенциалов действия у сенсорных нейронов, тем большее число промежуточных значений силы раздражителя способна различать сенсорная система. Первичные сенсорные нейроны одинаковой модальности различаются порогом возбуждения, поэтому при действии слабых стимулов возбуждаются только наиболее чувствительные нейроны, но с увеличением силы раздражителя на него реагируют и менее чувствительные нейроны, имеющие более высокий порог раздражения. Чем больше первичных сенсорных нейронов возбудится одновременно, тем сильнее будет их совместное действие на общий нейрон второго порядка, что в итоге отразится на субъективной оценке интенсивности действующего раздражителя.
Длительность ощущения зависит от реального времени между началом и прекращением воздействия на рецепторы, а также от их способности уменьшать или даже прекращать генерацию нервных импульсов при продолжительном действии адекватного стимула. При длительном действии стимула порог чувствительности рецепторов к нему может повышаться, что определяется как адаптация рецепторов. Механизмы адаптации не одинаковы в рецепторах разных модальностей, среди них различают быстро адаптирующиеся (например, тактильные рецепторы кожи) и медленно адаптирующиеся рецепторы (например, проприоцепторы мышц и сухожилий). Быстро адаптирующиеся рецепторы сильнее возбуждаются в ответ на быстрое нарастание интенсивности стимула (фазический ответ), а их быстрая адаптация способствует освобождению восприятия от биологически незначительной информации (например, контакт между кожей и одеждой). Возбуждение медленно адаптирующихся рецепторов мало зависит от скорости изменения стимула и сохраняется при его длительном действии (тонический ответ), поэтому, например, медленная адаптация проприоцепторов позволяет человеку получать нужную ему для сохранения позы информацию в течение всего необходимого времени.
Существуют сенсорные нейроны, генерирующие потенциалы действия спонтанно, т. е. при отсутствии раздражения (например, сенсорные нейроны вестибулярной системы), такая активность называется фоновой. Частота нервных импульсов в этих нейронах может увеличиваться или уменьшаться в зависимости от интенсивности действующего на вторичные рецепторы стимула, кроме того, она может определяться направлением, в котором отклоняются чувствительные волоски механорецепторов. Например, отклонение волосков вторичных механорецепторов в одну сторону сопровождается повышением фоновой активности сенсорного нейрона, которому они принадлежат, а в противоположную сторону — понижением его фоновой активности. Указанный способ рецепции позволяет получать информацию и об интенсивности стимула, и о направлении, в котором он действует.
17.1.3. Рецептивные поля
Рецептивным полем называется область, занимаемая совокупностью всех рецепторов, стимуляция которых приводит к возбуждению сенсорного нейрона (рис. 17.1). Максимальная величина рецептивного поля первичного сенсорного нейрона определяется пространством, которое занимают все ветви его периферического отростка, а число рецепторов, имеющихся в этом пространстве, указывает на плотность иннервации. Высокая плотность иннервации сочетается, как правило, с малыми размерами рецептивных полей и, соответственно, высоким пространственным разрешением, позволяющим различать стимулы, действующие на соседние рецептивные поля. Малые рецептивные поля типичны, например, для центральной ям-
А. Рецептивные поля первичных сенсорных нейронов ограничены областью их чувствительных окончаний. Рецептивное поле переключательного нейрона образуется из суммы рецептивных полей конвергирующих к нему первичных сенсорных нейронов.
Б. Раздражение центральной или периферической области рецептивного поля сенсорного нейрона второго и следующих порядков сопровождается противоположным эффектом. Как видно на схеме, раздражение центра рецептивного поля вызовет возбуждение проекционного нейрона, а раздражение периферической области — торможение с помощью интернейронов переключательного ядра (латеральное торможение). В результате контраста, создаваемого между центром и периферией рецептивного поля, выделяется информация для передачи на следующий иерархический уровень.
ки сетчатки и для пальцев рук, где плотность рецепторов значительно выше, чем на периферии сетчатки или в коже спины, для которых характерны большая величина рецептивных полей и меньшее пространственное разрешение. Рецептивные поля соседних сенсорных нейронов могут частично перекрывать друг друга, поэтому информация о действующих на них стимулах передается не по одному, а по нескольким параллельным аксонам, что повышает надежность ее передачи.
Величина рецептивных полей сенсорных нейронов второго и следующих порядков больше, чем у первичных сенсорных нейронов, поскольку центральные нейроны получают информацию от нескольких конвергирующих к ним нейронов предшествующего уровня. От центра рецептивного поля информация передается непосредственно к сенсорным нейронам следующего порядка, а от периферии — к тормозным интернейронам переключательного ядра, поэтому центр и периферия рецептивного поля являются реципрокными по отношению друг к другу. В результате сигналы от центра рецептивного поля беспрепятственно достигают следующего иерархического уровня сенсорной системы, тогда как сигналы, поступающие от периферии рецептивного поля, тормозятся (в другом варианте организации рецептивного поля легче пропускаются сигналы от периферии, а не от центра). Такая функциональная организация рецептивных полей обеспечивает выделение наиболее значимых сигналов, легко различаемых на контрастном с ними фоне.
17.1.4. Переработка информации в переключательных ядрах и проводящих путях сенсорной системы
Сенсорные нейроны низшего иерархического уровня способны передавать электрические сигналы одновременно нескольким нейронам следующего уровня благодаря дивергенции к ним своих аксонов. Это повышает надежность передачи информации от одного иерархического уровня к другому и позволяет сохранять чувствительность сенсорной системы при утрате отдельных нейронов. Возбуждение нейронов более высокого иерархического уровня определяется не только действием на них нейронов предыдущего уровня, но и механизмом латерального торможения, существующего в переключательных ядрах (рис. 17.2).
Латеральное торможение происходит вследствие активации тормозных интернейронов переключательного ядра коллатералями возбуждающих нейронов. Чем сильнее возбужден релейный сенсорный нейрон, тем больше он активирует тормозные нейроны, которые подавляют активность соседних релейных нейронов. Релейные нейроны, передающие сигналы от центра рецептивного поля, сильнее других повышают активность тормозных нейронов, а их влияние на соседние релейные нейроны делает еще большим контраст между возбужденными и тормозимыми нейронами, выделяя линию передачи избранных сигналов.
Высшие уровни сенсорной системы регулируют переработку информации в низших по отношению к ним переключательных ядрах посредством нисходящего торможения или усиления передаваемых сигналов. Нисходящее торможение (рис.17.3) происходит вследствие активации тормозных нейронов переключательного ядра, деятельность которых определяют нисходящие пути, начинающиеся на более высоком иерархическом уровне сенсорной системы. В результате нисходящего торможения повышается порог афферентной синаптической передачи в переключательном ядре низшего уровня. Нисходящее торможение представляет собой регуляцию сенсорно-
Рецепторы первичных сенсорных нейронов
го восприятия по механизму отрицательной обратной связи. Тормозные интернейроны переключательных ядер уменьшают частоту передаваемых на следующий уровень сигналов, в связи с чем сенсорное ощущение ослабляется.
Нисходящее усиление происходит с помощью возбуждающих интернейронов переключательного ядра, которые активируются аксонами нейронов более высокого иерархического уровня. Вследствие этого в управляемом по механизму положительной обратной связи переключательном ядре понижается порог синаптической передачи, что делает возможным прохождение относительно слабых сигналов на следующий иерархический уровень. Одновременное использование механизмов отрицательной и положительной обратной связи позволяет освобождаться от избыточной информации, подавлять «шум», т. е. нейронную активность, не содержащую физиологически значимых сообщений, и одновременно выделять и усиливать сигналы, на которых будет сосредоточено внимание.
Большинство раздражителей, воспринимаемых сенсорными системами, оказывает на них комплексное действие, поскольку одновременно возбуждает разные типы рецепторов. Например, прикасающийся к ограниченному участку кожи предмет может быть гладким или шершавым, теплым или холодным, сухим или влажным, а его давление на кожу может усиливаться или ослабевать, он может передвигаться в том или ином направлении.
К другим
областям ЦНС
Рис. 17.3. Схема нисходящего торможения в сенсорных системах.
Передачу афферентных сигналов от одного иерархического уровня сенсорной системы к другому в переключательных ядрах контролируют высшие иерархические уровни. На схеме показан принцип нисходящего торможения коры, которое осуществляется с помощью тормозных интернейронов (выделены черным цветом) переключательного ядра. Возбуждение тормозных интернейронов под влиянием коры препятствует передаче афферентных сигналов в переключательном ядре.
Зрительные ощущения представляют собой сочетание определенной формы воспринимаемого предмета, его движения и комбинации различных цветов, заполняющих ту или иную деталь формы. Сенсорные системы организованы так, что информация о каждом компоненте комплексного раздражителя передается одновременно по нескольким параллельным путям, каждый из которых относится к определенной субмодальности, как, например, форма, движение или цвет наблюдаемого зрительного объекта. В каждом из таких путей независимо друг от друга перерабатываются сигналы, несущие информацию о разных качествах подействовавшего на рецепторы комплексного раздражителя. При этом разные каналы, используемые для передачи сенсорной информации, не дублируют друг друга, в чем проявляется принцип многоканальности, присущий всем сенсорным системам. Высокая упорядоченность нейронных переключений на каждом иерархическом уровне обеспечивает поступление информации от каждого рецептивного поля к соответствующим именно ему кортикальным колонкам проекционной коры. Необходимое для целостного восприятия раздражителя объединение информации, относящейся к разным субмодальностям, происходит в сенсорных регионах коры.
17.1.5. Субъективное сенсорное восприятие
Каждая сенсорная система воспринимает действие адекватного стимула в ограниченном диапазоне значений его силы. Наименьший по интенсивности стимул, способный вызвать ощущение, называется абсолютным порогом ощущения. Его величина устанавливается опытным путем, она не одинакова у разных людей и может изменяться у одного и того же человека в зависимости от функционального состояния, различаясь, например, при оптимальной работоспособности и утомлении. Величина абсолютного порога ощущения выше абсолютного порога первичных сенсорных нейронов, так как возбуждение отдельных чувствительных нейронов или их небольшой группы не обязательно приводит к возбуждению высших уровней сенсорной системы вследствие тормозных процессов на предыдущих иерархических уровнях. Поэтому не каждый стимул, возбуждающий рецепторы первичного сенсорного нейрона, субъективно ощущается и осознается.
Величина, на которую один стимул надпорогового диапазона должен отличаться от другого, чтобы их разницу можно было субъективно различить, получила название дифференциального порога или порога различения. Ощущаемый прирост интенсивности раздражения (дифференциальный порог) должен превышать ранее действовавший стимул на определенную и постоянную величину. Например, человек легко различает по весу гирьки весом 14 и 15 граммов (разница в 1 грамм), но гирьки весом 29 и 30 граммов кажутся ему одинаковыми, и различия между ними выявляются, если разница окажется не меньше 2 граммов. Если же гирька составит 60 граммов, то субъективное ощущение большего груза возможно только тогда, когда его прирост будет не меньше 4 граммов. Таким образом, ощущаемый прирост силы раздражителя возможен при ее увеличении на постоянную величину, что сформулировано в законе Вебера как 6S/S = к, где S — раздражение, 6S — его ощущаемый прирост, к — постоянная величина.
Закон Вебера справедлив для разных модальностей, но лишь в границах раздражения средней силы, а при слабых и сильных стимулах способность к различению силы стимулов у человека снижается. Предложена также ступенчатая шкала интенсивности ощущений, в которой за ноль принимается величина абсолютного порога, а зависимость между интенсивностью стимула и ощущением выражается как: Е = k х log(S/S0), где Е — интенсивность ощущения, к — постоянная величина, S — интенсивность стимула, So — абсолютный порог. Эта зависимость, получившая название закона Вебера—Фехнера, показывает, что линейное увеличение интенсивности ощущения отражает логарифмический рост интенсивности стимула. Закон Вебера—Фехнера характеризует субъективную способность человека различать действующие стимулы (шкала различения), но не оценивает саму интенсивность ощущений, поскольку этот закон основан на допущении равенства любых ее приростов, как к слабым, так и к сильным стимулам.
Субъективная оценка интенсивности раздражителя (качественное различие) возрастает при увеличении разницы между пороговой и действующей силой стимула (количественное различие). Однако зависимость между силой стимула и ощущением не одинакова при разной интенсивности стимулов, а потому имеет не линейный, а степенной характер. Для оценки интенсивности ощущений всего диапазона используется шкала Стивенса, устанавливающая зависимость ощущений от силы стимула в виде степенной функции: Е = k(S — S0)n, где Е — интенсивность ощущения, S — действующая сила стимула, So — абсолютный порог, к — константа шкалы, п — показатель степени, который зависит от сенсорной модальности (например, для восприятия светового ощущения он составляет 0,33, громкости звука — 0,6, а для проприоцептивных ощущений — 1,7).
Пространственные характеристики действующих стимулов, необходимые для их различения, зависят от специфических особенностей каждой сенсорной системы и величины рецептивных полей. Прикосновение к коже дистальной фаланги пальца руки двух ножек циркуля с расстоянием между ними 2 мм ощущается раздельно, но чтобы ощутить раздельное прикосновение к коже спины, ножки циркуля необходимо раздвинуть до 60 мм. Пространственное восприятие этих тактильных стимулов зависит от размеров соответствующих рецептивных полей: раздельное ощущение возможно только при условии раздражения каждой ножкой циркуля независимого рецептивного поля. Лишь тогда информация о каждом стимуле будет перерабатываться раздельно на каждом уровне организации сенсорной системы, включая проекционную область коры. Аналогичная ситуация имеет место при восприятии двух точек зрительного поля: они не сливаются в одну, если отражаемые ими световые лучи попадут на разные рецептивные поля сетчатки. Имеет значение и степень контраста между действующим стимулом и его фоном: хорошо контрастируемые объекты (например, черное на белом) различаются легче, чем мало контрастируемые (черное на сером).
Временная характеристика восприятия действующих стимулов у человека имеет абсолютный порог различения коротких временных отрезков, который соответствует примерно ’/18 секунды. Например, 18 зрительных изображений, предъявленных в течение 1 секунды, сливаются в непрерывное движение, 18 прикосновений к коже за 1 секунду воспринимаются как одно, а 18 звуковых колебаний в секунду воспринимаются как один очень низкий звук. Разрешающая способность сенсорных систем для восприятия действующих через малые промежутки времени стимулов ограничена рефрактерным периодом, во время которого система не способна реагировать на предъявленный стимул.