Ростовые движения растений




Сравнивая растительный и животный организмы, обычно говорят, что в отличие от животных растения не передвигаются, прикреплены в течение жизни к определенному месту. Однако движение как одно из свойств живой материи характерно и для растений.

Движениями растений называют изменения расположения их органов в пространстве, обусловленные разными внешними факторами. Органы прикрепленных растений изменяют свое положение в пространстве благодаря росту, точнее, растяжению клеток и колебаниям тургорного давления. Ткани, непосредственно участвующие в движениях, имеют растяжимые и относительно тонкие клеточные стенки. К таким клеткам относятся, например, тонкостенные клетки основной паренхимы; клетки, находящиеся в основании черешков (подушечках) листьев бобовых растений; моторные клетки в эпидерме некоторых злаков, замыкающие клетки устьиц. Изменения тургорного давления происходят в результате транспирации, а также выхода воды из вакуоли в свободные пространства клеточных стенок и в межклетники. Однако нередко вместе с водой выходят и растворенные вещества. Следовательно, существует тесная связь между движениями и водным обменом растения и содержанием в его клетках минеральных веществ. В основе движений лежит универсальное свойство живой материи – раздражимость.

В зависимости от типа раздражителя движения высших растений делят на две группы: тропизмы и настии.

Многие раздражители действуют на растение направленно, с одной стороны. Растение способно различать направление действия света или вещества, силы тяжести. В ответ на одностороннее действие внешних факторов побеги или корни изгибаются. В результате изменяется расположение органов в пространстве. Эти изменения положения органов, вызываемые односторонне действующим внешним раздражителем, получили название тропизмов.

В зависимости от природы раздражителя (свет, сила тяжести, химические вещества, прикосновение, электрический ток, поранение) тропизмы называют фото-, гео-, хемо-, тигмо-, электро-, травмотропизмами. Характер ответной реакции может быть разным. Те органы, которые поворачиваются к раздражителю, называют положительно тропными, а те, которые отворачиваются от раздражителя, – отрицательно тропными. Тропизмы чаще связаны с более быстрым ростом клеток на одной стороне стебля, корня или черешка, реже – с изменением тургорного давления.

Геотропизмом называют движения растений в результате воздействия силы земного притяжения. Корень растения обладает положительным геотропизмом: – он растет вниз, а стебель – отрицательным, ибо растет в противоположном направлении. Весьма характерны в этом отношении проростки, помещенные в горизонтальном положении во влажную среду, или деревья, растущие на склонах. У первых корень вскоре будет изгибаться вниз, а стебель – вверх. Вторые будут ориентированы в направлении радиуса Земли, а не перпендикулярно поверхности склона. Ориентация к горизонтальной плоскости сразу же проявляется у прорастающего семени и у укореняющегося черенка. Корень углубляется в почву, где добывают воду и минеральные вещества, стебель же поднимается вверх, вынося листья навстречу падающим солнечным лучам.

Объяснения тому факту, что при геотропизме определяющим воздействием является сила земного притяжения, были получены еще в начале XIX в. с помощью простого, но остроумного приема. Проростки растений помещались на вращающееся колесо и увлажнялись водой. Растения росли таким образом, что стебли и корни их располагались по радиусам в плоскости вращения колеса: корни по направлению к периферии, а стебли – к центру, Т.е. первые росли по направлению центробежной силы, а стебли – в обратном направлении. Растения не знали ни верха, ни низа. Рост их определялся только направлением центробежной силы, заменившей силу земного притяжения.

Наиболее чувствительными к силе тяжести являются кончик корня и зона роста стебля, а у злаков – верхушка колеоптиля.

Первым, кто открыл место восприятия силы земного притяжения, был Ч. Дарвин. В его опытах корень с удаленной точкой роста утрачивал способность реагировать на эту силу и продолжал расти в том же положении, в котором он находился. Голландский ученый Ф. Вент и советский академик Н.Г. Холодный установили, что если к поверхности среза прикрепить отрезанный кончик корня или верхушку колеоптиля злаков, то тот же корень снова приобретает способность к проявлению геотропической чувствительности.

Было высказано предположение, что дело здесь заключается в наличии в кончике корня или верхушке колеоптиля злаков фитогормонов. При вертикальном положении растений ауксины из верхушек перетекают в зону растяжения равномерно по всем сторонам стебля и корня. При горизонтальном положении растения ауксин накапливается на нижней стороне стебля и корня. Объяснить это можно тем, что нижняя сторона органа приобретает положительный заряд, а верхняя сторона - отрицательный. Ауксин обычно перемещается в виде аниона и поэтому концентрируется на нижней стороне. Стебель имеет гораздо более высокий оптимум концентрации ауксина (примерно 10-5моль/ л), чем корень (10-10-10-11 моль/л). Обладая различной чувствительностью к концентрации ауксина, корень и стебель, поэтому совершенно по-разному относятся к повышенной концентрации ауксина на нижней стороне горизонтально ориентированного органа. При накоплении ростового вещества на нижней стороне стебля рост ее ускоряется и вызывает изгиб кверху, а та же концентрация в нижней стороне корня приводит к противоположному эффекту: рост клеток ингибируется, и корень изгибается вниз.

Изложенная теория Вента - Холодного объяснила вопрос, над решением которого трудились ученые в течение более ста лет. Очевидно, что в процессе длительной эволюции сохранялись лишь те особи, у которых под действием силы тяжести наблюдалась указанная реакция на неравномерное распределение ауксина.

Ростовые движения растений, вызванные односторонним действием света, получили название фототропизма. Если изгиб направлен в сторону света, то говорят о положительном, а в обратную сторону – отрицательном фототропизме. Положительный фототропизм стеблей и колеоптилей объясняется тем, что сторона органа, обращенная к свету, растет медленнее, чем противоположная. Механизм фототропической реакции также связан с ауксинами: на затененной стороне ауксина больше, чем на освещенной. Поэтому растяжение клеток на затененной стороне происходит быстрее, чем на освещенной, и растение поворачивается в сторону большей освещенности.

Воспринимают одностороннее действие света верхушки надземных частей растений. Корни и корневища редко реагируют на этот фактор. Но у некоторых растений, например из семейства крестоцветных, корни проявляют иногда и отрицательный фототропизм.

Если в специальную фототропическую камеру с небольшимотверстием в боковой стенке поместить проростки, например злаков, то уже через несколько часов верхушка колеоптиля повернется в сторону луча света, а изгиб произойдет в зоне растяжения. Если же, как показал впервые Ч. Дарвин, надеть на верхушку колеоптиля непроницаемый для света колпачок, то фототропическая реакция не проявляется.

Фототропизм имеет колоссальное значение в жизни растений. Именно благодаря нему листья принимают положение, наиболее благоприятное для осуществления процесса фотосинтеза. Листья многих растений занимают более освещенные места, располагаясь так, чтобы не затенять друг друга. Это явление, которое называется листовой мозаикой, отчетливо наблюдается у клена, вяза, орешника, плюща и многих других растений. Фототропические движения листьев особенно важны в затененных условиях. В значительной мере нормальный рост растений в комнатах, цехах заводов и фабрик и других закрытых помещениях обязан фототропизму.

Некоторые растения с такой силой реагируют на изменение направления света, что следуют за движением солнца на небосводе (гелиотропизм). К таким растениям относятся хорошо известные подсолнечник, череда и некоторые другие.

Не все лучи спектра одинаковы в проявлении фотопериодических изгибов. Наиболее активными являются сине-фиолетовые лучи. Желтая, красная, ультрафиолетовая части спектра в этом отношении неактивны.

Хемотропические ростовые изгибы связаны с односторонним действием тех или иных химических веществ. Наиболее ярким примером хемотропизма является рост корней в сторону больших концентраций питательных веществ в почве. Большое значение хемотпропизм имеет и для нормальной жизнедеятельности грибов и высших растений, относящихся к сапрофитам и паразитам. Их гифы и присоски растут в сторону источника органических веществ. Явление хемотропизма наблюдается и при прорастании пыльцы и росте пыльцевой трубки. В данном случае, очевидно, основное влияние оказывает наличие выделяемых созревающими яйцеклетками веществ, которые управляют движением пыльцевых трубок. В числе этих веществ находятся некоторые специфические органические соединения, а также бор и кальций. Отрицательный хемотропизм корней наблюдается в случаях воздействия на них различных ядов.

Движения корней растений в сторону кислорода воздуха получило название аэротропизма, а в сторону более оптимальной влажности почвы – гидротропизма. Первый можно наблюдать в избыточно увлажненных или сильно уплотненных почвах, второй при недостатке воды в почве. Эти виды тропизмов имеют важное экологическое значение, обеспечивая существование растений в стрессовых условиях, вызываемых недостатком кислорода или воды.

Под тигмотропизмом подразумевают ростовую реакцию растений на прикосновение. Особенно сильно выражен тигмотропизм стеблевых и листовых усиков цепляющихся растений. Сторона усика при соприкосновении с опорой растет медленнее противоположной, что и приводит к обвиванию усика вокруг опоры. Эти движения происходят с затратой энергии. Предполагают участие в этих процессах сократительных белков и фитогормонов.

Различают также травмотропизмы, позволяющие избегать соприкосновения с острыми предметами или химическими веществами, вызывающими травмы, радиотропизмы – ростовые изгибы и движения относительно источника радиоактивного излучения и некоторые другие.

Настия – это движение органов растения, вызываемое раздражителем, не имеющим строгого направления, а действующим равномерно на все растение. Факторами, вызывающими настические движения, являются изменения температуры, освещенности, влажности воздуха в течение суток, перед дождем или после него. Если тропизмы – это движения органов в ответ на изменения напряженности внешнего фактора в пространстве, то настии – это движения органов, возникающие под действием смены условий во времени. Названия настии, как и тропизмов, зависят от природы раздражителей, которые их вызывают. Различают термо-, фото-, хемо-, гидро-, тигмо-, сейсмо-, электро- и травмонастии. К настическим движениям способны лишь двусторонне-симметричные органы (листья, лепестки).

Примером термонастии может служить раскрывание цветков тюльпана при высокой температуре и закрывание при низкой. К фотонастическим движениям относятся раскрывание цветков кувшинки и соцветий одуванчика при хорошем освещении и закрывание при уменьшении количества света, поднимание листовых пластинок кислицы на свету и опускание в темноте.

Наиболее распространенными являются никтинастические движения, т.е. вызываемые сменой дня и ночи, когда одновременно меняются условия температуры и освещения. Очень многие цветки открываются утром и закрываются на ночь или наоборот. Раздражителем, вызывающим никтинастическую реакцию, может быть изменение температуры или только интенсивности света, или одновременно температуры и интенсивности света. Никтинастические движения облегчают опыление цветков в благоприятную погоду и защищают внутренние органы цветка при неблагоприятных условиях.

Разновидностью настических изгибов являются сеисмонастии, вызываемые прикосновением или сотрясением, например листьев стыдливой мимозы: клетки одной стороны сочленения теряют клеточный сок с последующим мгновенным падением тургора, сжиманием клеток и опусканием черешков и листочков слож­ных листьев. Передается возбуждение при помощи электрического импульса или особых гормонов.

Механизм настий до конца не изучен. Предполагают, что настии происходят благодаря неравномерному росту разных сторон лепестков или листочков околоцветника. Если быстрее растет верхняя сторона, то происходит эпинастия, в результате которой раскрываются цветки, почки, опускаются листья. Если быстрее растет нижняя сторона, то происходит гипонастия, в результате которой органы закрываются. Открывания и закрывания цветков могут повторяться в определенном ритме. При каждом новом открывании и закрывании происходит рост клеток соответственно верхней или нижней стороны. Если процессы повторяются много раз, то лепестки или листочки околоцветника значительно удлиняются. Неравномерный рост, возможно, обусловлен гормонами. Это доказывается с помощью опыта. Если срезать верхушку молодого растения томата и на поверхность среза нанести пасту с ИУК, то через некоторое время все оставшиеся листья опустятся (эпинастия).

В основе сейсмонастий, а также изменения положения листьев при переходе от дня к ночи лежит быстрое изменение тургорного давления в клетках на различных сторонах органа. Изменения тургора в моторных клетках, расположенных на разных сторонах подушечек, вызываются увеличением или уменьшением концентрации в них ионов калия. Калий перемещается из сокращающихся клеток в растягивающиеся благодаря работе калиевых насосов. За ним поступает вода, и клетки набухают. Центральная вакуоль при этом распадается на множество мелких вакуолей. Тургорные движения обратимы.

Лучше изучен механизм опускания листьев у стыдливой мимозы, у которой различают два механизма проведения возбуждения: химический и электрический. Химический механизм состоит в том, что раздраженные клетки выделяют вещество, передвигающееся по флоэме и паренхиме. Когда это вещество дойдет до подушечки, происходит ответная реакция (листочек складывается). Реакцию вызывает очень низкая концентрация этого вещества 10-8 г/мл. Предполагают, что этими веществами являются аминокислоты, например, глутамат и аланин или малат. При электрическом механизме проведения возбуждения сразу после прикосновения в ее клетках возникает потенциал действия, равный -140 мВ (потенциал покоя равен -160 мВ). Потенциал действия распространяется от клетки к клетке по проводящим пучкам со скоростью 2-5 см/с. Он передается в подушечки у основания листочков и всего листа, в результате в моторных клетках уменьшается тургорное давление (вода выходит в межклетники), и лист складывается.

Изменение тургорного давления зависит от ионов калия и хлора, концентрация которых в клетке регулируется ионными насосами. Возбуждение моторных клеток приводит к увеличению проницаемости плазмалеммы, ионы хлора и калия выходят, одновременно резко падает тургорное давление. Возможно, что в выделении воды участвуют и сократительные белки. На это указывает высокое содержание АТФ в моторных клетках, сильно уменьшающееся во время движения.



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2016-02-13 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: