Уровень значимости – вероятность ошибочного отклонения (отвержения) гипотезы, в то время как она на самом деле верна. Речь идет об отклонении нулевой гипотезы.
1. 1-й уровень значимости: α ≤ 0,05.
Это 5%-ный уровень значимости. До 5% составляет вероятность того, что мы ошибочно сделали вывод о том, что различия достоверны, в то время как они недостоверны на самом деле. Можно сказать и по-другому: мы лишь на 95% уверены в том, что различия действительно достоверны.
2. 2-й уровень значимости: α ≤ 0,01.
Это 1%-ный уровень значимости. Вероятность ошибочного вывода о том, что различия достоверны, составляет не более 1%. Можно сказать и по-другому: мы на 99% уверены в том, что различия действительно достоверны.
3. 3-й уровень значимости: α ≤ 0,001.
Это 0,1%-ный уровень значимости. Всего 0,1% составляет вероятность того, что мы сделали ошибочный вывод о том, что различия достоверны. Это - самый надёжный вариант вывода о достоверности различий. Можно сказать и по-другому: мы на 99,9% уверены в том, что различия действительно достоверны.
В области ФК и спорта достаточен уровень значимости α = 0,05, более серьезные выводы рекомендуется давать, используя уровень значимости α = 0,01 или α = 0,001.
7.2. F- критерий Фишера
Оценка генеральных параметров с помощью выборочных данных производится с помощью F - критерия Фишера. Данный критерий указывает о наличии или отсутствии достоверного различия в двух дисперсиях. Критерий Фишера - показатель достоверности влияния изучаемых факторов на полученный результат.
Пример 4. В экспериментальной группе школьников средний прирост результатов в прыжках в длину с разбега, после применения новой методики обучения, составил 10 см ( 10 см). В контрольной группе, где применялось традиционная методика, 4 см ( 4 см). Исходные данные:
|
Экспериментальная группа (xi): 17; 11; 3; 8; 9; 12; 10; 13; 10; 7.
Контрольная группа (yi): 8; 1; 6; 2; 3; 0; 4; 7; 5; 4.
Можно ли утверждать, что нововведения эффективнее повлияли на процесс формирования изучаемого двигательного действия по сравнению с традиционной методикой?
Для ответа на поставленный вопрос воспользуемся F - критерием Фишера:
1) Задаемся уровнем значимости α = 0,05.
2) Вычисляем исправленные выборочные дисперсии из нашего примера по формуле:
3) Вычисляем значение F - критерия по формуле, причем, в числитель ставится большая дисперсия, в знаменатель – меньшая:
4) Из таблицы 3 приложения при α =0,05; df1 = n1 – 1 = 9; df2 = n2 – 1 = 9; находим F0,05 = 3,18
5) Сравниваем между собой значения F и F0,05.
Вывод. Поскольку F < F0.05 (2,1 < 3,18), то на уровне значимости α = 0,05 различие дисперсий статистически недостоверно, т.е. можно сказать, что школьники при обеих системах подготовки не отличаются по признаку вариативности результатов.
7.3. t - критерий Стьюдента
Общее название для класса методов статистической проверки гипотез (статистических критериев), основанных на распределении Стьюдента. Наиболее частые случаи применения t-критерия связаны с проверкой равенства средних значений в двух выборках. t -статистика строится обычно по следующему общему принципу: в числителе случайная величина с нулевым математическим ожиданием (при выполнении нулевой гипотезы), а в знаменателе — выборочное стандартное отклонение этой случайной величины, получаемое как квадратный корень из несмещенной оценки дисперсии.
|
Устанавливает доказательство достоверного различия или, наоборот, отсутствие различия в двух выборочных средних значениях для независимых выборок. Рассмотрим последовательность вычислений, используя пример 4:
1) Принимаем предположение о нормальности распределения генеральных совокупностей, из которых получены данные. Формулируем гипотезы:
Нулевая гипотеза Ho: = .
Альтернативная гипотеза: H1: ≠ .
Задаемся уровнем значимости α = 0,05.
2) В результате предварительной проверки при использовании критерия Фишера установлено, что различие дисперсий статистически недостоверно: D(x) = D(y).
3) Так как генеральные дисперсии D(x) и D(y) одинаковы, а n1 и n2 – объёмы малых независимых выборок, то наблюдаемое значение критерия равно:
Вычисляем число степеней свободы по формуле
Нулевая гипотеза отвергается, если │ │ ˃ , Из таблицы 1 приложения находим критическое значение t – критерия при α = 0,05; =18: = 2,101
Вывод: поскольку > (4,18 ˃ 2,101), то на уровне значимости 0,05 мы отвергаем гипотезу Н0 и принимаем альтернативную гипотезу Н1.
Таким образом, нововведения успешнее решают задачу обучения школьников прыжкам в длину с разбега, чем традиционная методика.
Далее рассмотрим сравнение двух выборочных средних значений для связанных выборок (парное сравнение).
Условия применения – разность связанных пар результатов измерения. Делается предположение о нормальном распределении этих разностей в генеральной совокупности с параметрами .
Пример 5. Группа 10 школьников в течение летних каникул находилась в летнем оздоровительном лагере. До и после сезона у них измеряли жизненную емкость легких (ЖЕЛ). По результатам измерений нужно определить, достоверно ли изменился этот показатель под влиянием физических упражнений на свежем воздухе.
|
Исходные данные до эксперимента (xi; мл) 3400; 3600; 3000; 3500; 2900; 3100; 3200; 3400; 3200; 3400, т.е. объем выборки n = 10.
После эксперимента (yi; мл): 3800; 3700; 3300; 3600; 3100; 3200; 3200; 3300; 3500; 3600.
Порядок вычислений:
1) Находим разность связанных пар результатов измерения di:
;
2) Формулируем гипотезы:
Нулевая гипотеза Ho: =
Альтернативная гипотеза: H1: ≠ 0.
3) Задаемся уровнем значимости α = 0,05
4) Вычисляем - (среднее арифметическое), sd - (стандартное отклонение). = 160(мл); sd = 150,6 (мл)
5) Значение t- критерия определяем по формуле для связанных пар:
Из таблицы 1 приложения находим критическое значение t – критерия при α = 0,05; = n – 1 = 9: = 2,262
Вывод: Поскольку t > tкр (3,36 > 2,262)наблюдаемое различие по показателю ЖЕЛ является статистически достоверным на уровне значимости α =0,05.
СПИСОК РЕКОМЕНДУЕМОЙ ЛИТЕРАТУРЫ
1. Афанасьев В.В. Основы отбора, за и контроля в спорте / В.В. Афанасьев, А.В. Муравьев, И.А. Осетров. – Ярославль: Изд-во ЯГПУ, 2008. − 278 с.
2. Биленко, А.Г. Основы спортивной метрологии: Учебное пособие /А.Г. Биленко, Л.П. Говорков; СПб ГУФК им. П.Ф. Лесгафта. – СПб., 2005. – 138 с.
3. Губа В.П. Измерения и вычисления в спортивно- педагогической практике: учебное пособие для студентов высших учебных заведений/ В.П. Губа, М.П.Шестаков, Н.Б. Бубнов, М.П. Борисенков. – М.: ФиС, 2006. – 220 с.
4. Гмурман В.Е. Руководство к решению задач по теории вероятностей и математической статистике. - М: Высшая школа, 2004. – 404 с.
5. Коренберг, В.Б. Спортивная метрология: учебник / В.Б. Коренберг – М.: Физическая культура, 2008. – 368 с.
6. Начинская, С. В. Спортивная метрология. Учебное пособие для студ. высш. учеб. заведений / С. В. Начинская.– М.: Издательский центр «Академия», 2005. – 240 с.
7. Начинская С.В. Применение статистических методов в сфере физической культуры / Начинская С.В – СПб., 2000. – 260 с.
8. Смирнов, Ю. И. Спортивная метрология: учеб. для студ. пед. вузов / Ю. И Смирнов, М. М. Полевщиков. – М.: Издат. центр «Академия», 2000. – 232 с.
ПРИЛОЖЕНИЕ
Таблица 1