№ 1.
1. | 2. | 3. | ||||
4.
| 5. | 6. |
Рис. 69
№2. Биссектриса угла В треугольника АВС пресекает описанную окружность в точке D. Доказать, что треугольник АDC равнобедренный.
План доказательства.
1. (доказать).
2. .
3. AD=CD.
Используемые факты из теоретической карты: 1.2.
№3. Доказать, что сторона треугольника, лежащая против угла в 300, равна радиусу окружности, описанной около треугольника.
План доказательства.
1. .
2. Вид .
3.
Используемые факты из теоретической карты:
1.1; 1.2.
№4. Угол при вершине равнобедренного треугольника равен 40°. Одна из
боковых сторон служит диаметром полуокружности, которая делится другими сторонами на три дуги. Найти градусные меры этих дуг.
План решения.
1. BD АС.
2.
3.
4.
Ответ: 400, 400, 1000
Используемые факты из теоретической карты: 1.2.
№5. Через вершины Ви С треугольника АВС проходит окружность, пересекающая стороны АВ и АС в точках К и М соответственно. Доказать, что ∆АВС~ ∆АМК. Найти МК и АМ, если АВ=2, ВС=4, АС=5, АК=1.
План доказательства.
1. Проведем .
2. .
3.
4.
5. ~ .
6. МК. 7. АМ. Ответ: .
Используемые факты из теоретической карты: 1.2. №6. Окружность, построенная на стороне параллелограмма как на диаметре, проходит через середину соседней стороны и точку пересечения диагоналей. Найти углы параллелограмма.
План решения.
1. – ромб
2. – равносторонний.
3. .
4. .
Ответ: 600, 1200.
Используемые факты из теоретической карты: 1.2.
№7. Окружность, построенная на большем основании трапеции как на диаметре, касается меньшего основания и пересекает боковые стороны, деля их пополам. Найти меньшее основание трапеции, если радиус окружности равен R.
|
План решения.
Дополнительные построения:
проведем АЕ, .
1.
2. ~ : СD2 = 4R(R - ОР).
3. CP = R, PD = R – OP.
4. ∆CPD: OP2 + 2R∙OP – 2R2 =0, .
5. Трапеция ABCD – равнобедренная. ВС = 2ОР.
Ответ: .
Используемые факты из теоретической карты: 1.2.
№8. Высоты остроугольного треугольника продлены до пересечения с описанной окружностью. Доказать, что отрезки этих линий от ортоцентра до окружности делятся соответственными сторонами пополам.
План доказательства.
Точка К – ортоцентр треугольника АВС.
Проведем BN.
1. ∆ВНС:
2. ∆АРС:
3.
4. 5. . 6. КР=PN.
Аналогично доказывается, что .
Используемые факты из теоретической карты: 1.2.
№9. Окружность разделена точками A, B, C и D так, что Хорды и продолжены до пересечения в точке М. Найти угол АМВ.
План решения.
1.
2.
3. .
Ответ: 72°.
Используемые факты из теоретической карты: 1.3.
№ 10. На окружности взяты четыре точки. Середины образованных дуг попарно соединены отрезками. Доказать, что среди этих отрезков есть, по крайней мере, два перпендикулярных.
А1, А2, А3, А4 – произвольно выбранные точки,
С1, С2, С3, С4 - середины дуг А1 А2, А2 А3, А3 А4, А1А4 соответственно.
План доказательства.
1. Выразить через и а затем через дуги
2.
Используемые факты из теоретической карты: 1.4.
№11. В окружность вписан четырехугольник. Его противоположные стороны CD и АВ, ВС и AD продолжены до взаимного пересечения в точках N и F. Доказать, что биссектрисы углов BFA и AND перпендикулярны.
План решения.
1. .
2. .
3.
4. .
5. .
6. .
7. = =90°.
Используемые факты из теоретической карты:
1.3; 1.4.
|
№12. Через точку касания двух окружностей проведены две секущие, концы которых соединены хордами. Доказать, что эти хорды параллельны.
План доказательства.
1. .
2. .
3. .
4. CB || DE.
Используемые факты из теоретической карты: 1.2; 1.5.
№13. В треугольнике АВС проведены высоты ВВ1 и СС1. Доказать, что
касательная в точке А к описанной окружности параллельна прямой В1С1.
План решения.
1. ÐАВС = ÐАВ1С1.
2. ÐАВС = ÐКАС.
3. АК || C1D1.
Используемые факты из теоретической карты: 1.5.
№14. Окружность проходит через вершины В, С, D трапеции ABCD и касается боковой стороны АВ в точке В. Основания трапеции а и b. Найти диагональ BD.
План решения.
1.
2.
3. ~ .
4. .
5. . Ответ: .
Используемые факты из теоретической карты: 1.2; 1.5.
№15. Из точки С окружности на хорду АВ опущен перпендикуляр CD. Из концов хорды опущены перпендикуляры АЕ и BF на касательную к окружности в точке С. Доказать, что .
План доказательства.
1. ~
2. .
3. АЕ.
4. ~ .
5. . 6. BF. 7. .
Используемые факты из теоретической карты: 1.2; 1.5.
№16. Дана точка Р, удаленная на 7 см от центра окружности радиуса 11 см.
Через эту точку проведена хорда длиной 18 см. Каковы длины отрезков, на
которые делится хорда точкой Р?
План решения.
1. .
2. ∙РТ.
3. ∙ = ∙ (18 – ).
4. ∙РТ= ∙ .
5.
Ответ: 6 и 12. Используемые факты из теоретической карты: 2.1.
№17. АС и ВD – диагонали ромба АВCD. Окружность описанная около
треугольника ABD, пересекает большую диагональ АС в точке Е. Определить диагонали ромба, если АВ = 20 см, СЕ = 7 см.
План решения.
1. АО2+ОВ2=АВ2.
2. АО∙ОЕ=ОВ2, АО∙(АО – ЕС) = ОВ2.
3. Решить систему уравнений
|
Ответ: 32 см, 24 см.
Используемые факты из теоретической карты: 2.1.
№ 18. Через точку Р диаметра АВ данной окружности проведена хорда CD, образующая с диаметром АВ угол 60°. Вычислить радиус окружности R, если
СР = а и PD = b.
Дополнительное построение: ОК ^ DC.
План решения.
1.СК. 2. КР. 3. ОР ( ОКР).
4. Выразить АР через ОР и R.
5. Выразить РВ через ОР и R.
6.Составить равенство АР·РВ = СР·РD.
7.Выразить R из составленного равенства.
Ответ:
Используемые факты из теоретической карты: 2.1;
№19. Из внешней точки проведена к окружности секущая длиной 12 см и
касательная, длина которой составляет два внутренних отрезка секущей.
Определить длину касательной.
План решения.
1. Выразить AD через АС и DС.
2. Выразить АВ через DС.
3. Составить уравнение.
|
Ответ:
Используемые факты из теоретической карты: 2.2.
№20. Полуокружность, построенная на меньшем катете, как на диаметре, делит биссектрису острого угла, прилежащего к этому катету, в отношении 1:3. Найти углы треугольника.
План решения.
1. КС – касательная, КВ – секущая,
выразить КС (в частях).
2. sin
3. Ответ: 300, 600.
Используемые факты из теоретической карты: 2.2.
№21. Катеты прямоугольного треугольника равны а и b. На отрезках гипотенузы, определенных основанием перпендикуляра, опущенного на гипотенузу из
вершины прямого угла, описаны как на диаметрах окружности. Найти длины отрезков катетов, находящихся внутри этих окружностей.
План решения.
1. .
2. КС (СD – касательная, СА – секущая).
3. АК.
4. Аналогично LB.
Ответ: . Используемые факты из теоретической карты: 2.2.
№22. На боковой стороне АВ равнобедренного треугольника как на диаметре построена окружность. Окружность пересекает основание АС в точке М, а
боковую сторону ВС в точке N. Найти длины отрезков СN и NM, если
АС=а, АВ=b.
План решения.
1. .
2. .
3. .
4. CN∙CB=AC∙CM, CN.
5. MA=NM.
Ответ: ,
Используемые факты из теоретической карты: 1.2; 2.3.