№1. Найти площадь треугольника.
1. | 2. | |||||||||||
4.
| 5. | 6. | ||||||||||
8.
|
| |||||||||||
10. | 11. | 12. |
Рис. 178
№2. Вычислить площадь равнобедренного треугольника, если длина его высоты, проведенной к боковой стороне, равна 12 см, а длина основания равна 15 см.
План решения.
1. КС.
2. ∆АКС~∆BDС.
3. ВD.
4. S∆АBС.
Ответ: 75 см2.
Используемые факты из теоретической карты: 1.
№3. Диагонали разбивают трапецию на четыре треугольника. Доказать, что треугольники, прилежащие к её боковым сторонам равновелики.
План доказательства.
1. ОВ∙АО = ОС∙ОD.
2.
Используемые факты из теоретической карты: 2.
№4. В треугольнике АВС даны три стороны АВ=26, ВС=30, АС=28.
Определить часть площади этого треугольника, заключенную между высотой и биссектрисой, проведенными из вершины В.
План решения.
1. S∆ABC
2. BH.
3. AH.
4. LA.
5. LH.
6. S∆LHB Ответ: 36.
Используемые факты из теоретической карты: 1, 3.
№5. Стороны треугольника 13 см, 14 см и 15 см. Определить радиус окружности, которая имеет центр на средней стороне и касается двух других сторон.
План решения.
1. S∆ABC .
2. BH.
3. ОВ – биссектриса.
4. ОС.
5. S∆ОBC .
6. ОК = r.
Ответ: 6 см.
Используемые факты из теоретической карты: 1, 3.
№6. Доказать, что сумма расстояний от любой точки, взятой внутри правильного треугольника, до его сторон равна 3 r, где r – радиус вписанной в этот треугольник окружности.
План доказательства.
1. S∆ABC = (р1+р2+р3)∙а.
2. S∆ABC=
3. р1+р2+р3=3r
Используемые факты из теоретической карты: 1, 4.
№7. В треугольник вписан круг радиуса 4 см. Одна из сторон треугольника разделена точкой касания на части, равные 6 см и 8 см. Найти длины двух
других сторон.
|
План решения.
1.
2. sin
3. AL.
4. Выразить S∆ABC через BL.
5. Выразить P∆ABC через BL.
6. Выразить S∆ABC через радиус вписанного
круга.
7. BL из равенства площадей (4) и (6).
8. АВ. 9. ВС.
Ответ: 13 см и 15 см.
Используемые факты из теоретической карты: 2, 4.
№8. Стороны треугольника ABC равны 20 см, 34 см и 42 см. Найти отношение площадей вписанного и описанного кругов.
План решения.
1. S∆ABC. 2. R. 3. p ∆ABC. 4. r. 5. Ответ:
Используемые факты из теоретической карты: 3, 4,5.
№9. Доказать, что для всякого треугольника имеет место равенство где r – радиус описанной окружности.
План доказательства.
1. 2. 3. 4.
Используемые факты из теоретической карты: 1, 4.
№10. Через середину стороны правильного треугольника проведена прямая, образующая с этой стороной угол α. Найти отношение площадей тех частей, на которые эта прямая разбивает треугольник.
План решения.
Пусть сторона данного треугольника равна а.
1. 2. sin 3. РМ. 4. S∆PBM.
5. S∆ABC. 6. SAPMC. 7.
Ответ: 2 сtg α + 1.
Используемые факты из теоретической карты: 2, 6.
№11. В треугольнике АВС проведена медиана ВD. Найти отношение радиуса окружности, описанной около треугольника АВD, к радиусу окружности, вписанной в треугольник АВС, если АВ=2, АС=6 и
План решения.
1. АD. 2. S∆АВD. 3.ВD.
4. R∆АВD. 5. ВС. 6. р∆АВС.
7. S∆АВС. 8. r ∆АВC. 9. R∆АВD: r ∆АВC.
Ответ:
Используемые факты из теоретической карты: 2. 4, 5.
№12. Площадь треугольника равна 16 см2, медианы ma и mb равны
соответственно 6 см и 4 см. Доказать, что эти медианы перпендикулярны.
План доказательства.
1. Выразить площадь данного треугольника через медианы ma и mb.
|
2. Найти синус угла между медианами.
3. ma mb.
Используемые факты из теоретической карты: 7.
№13. Площадь равнобедренного треугольника равна S, а угол между медианами, проведенными к боковым сторонам, равен α. Найти основание треугольника.
План решения.
1. АА1=СС1. 2. АО=ОС. 3.
4. Выразить АО через АА1.
5.Выразить АК через через АА1.
6. Выразить АС через через АА1.
7. Выразить АА1 из формулы площади S данного
треугольника.
8. Подставить в формулу (6) выражение АА1 через S.
Ответ:
Используемые факты из теоретической карты: 7.
№14. Периметр прямоугольного треугольника равен 2р, а гипотенуза равна с. Определить площадь круга, вписанного в этот треугольник.
План решения.
1. Выразить площадь треугольника через полупериметр и радиус вписанного круга.
2. Выразить площадь треугольника через гипотенузу и радиус вписанного круга.
3. Составить уравнение и решить его относительно r.
4. Sкр. Ответ: .
Используемые факты из теоретической карты: 4, 9.
№15. Высота, опущенная на гипотенузу прямоугольного треугольника, делит его на два треугольника, площади которых 6 и 54. Найти гипотенузу.
План решения.
1. ∆AСD~∆CBD.
2. Найти к – коэффициент подобия
треугольников AСD и CBD.
3. DC=3AD.
4. AD. 5. DC. 6. BD. 7. AВ.
Ответ: 20. Используемые факты из теоретической карты: 8, 11.
№16. Найти острые углы прямоугольного треугольника, если известно, что
отношение радиуса описанной около этого треугольника окружности к радиусу вписанной в него окружности равно 1+ .
План решения.
1. Выразить АС через R и sinA.
2. Выразить S∆ABC через R и sin2A.
|
3. Выразить S∆ABC через R и r.
4. Составить равенство площадей (2), (3).
5. Вычислить из равенства (4) sin2A.
6. 2А. 7. А. 8. В. Ответ: 30°, 60° Используемые факты из теоретической карты: 2, 9.
№17. Данный параллелограмм разделить на три равновеликие части прямыми, выходящими из одной вершины.
Дополнительные построения.
1. BD.
2. L: L AD и AL:LD=2:1.
3. K: К DC и DK:KC: 1·2.
План решения.
1. S∆АВL= S∆ABD = SABCD.
2. S∆ВKC= S∆CBD = SABCD. 3. SBLDK = SABCD.
Используемые факты из теоретической карты: 10.
№18. Через середину высоты равнобедренного треугольника проведены две прямые, соединяющие ее с вершинами основания. Какую часть площади треугольника составляет каждая из 6 частей, на которые эти прямые и высота разбивают треугольник?
Дополнительное построение: DPêêAL.
План решения.
Пусть S∆AВC =S
1. S∆АOD = S∆DOC = S. 2. BL: LC= .
3. S∆OLC = 2 S∆BOL. 4. S∆BOС== S.
5. S∆BOL= 6. S∆OLC= .
Ответ: ; ; .
Используемые факты из теоретической карты: 10.
№19. Через середину Е высоты BD равнобедренного треугольника АВС (АВ=ВС) проведена прямая MN, параллельная AB (точка M принадлежит АС, точка N принадлежит ВС). Найти площадь треугольника CMN, если площадь треугольника АВС равна 32.
Дополнительное построение: DP||MN.
План решения.
1. АМ = MD.
2. AD = DC.
3. - коэффициент подобия ∆CMN и ∆CBA.
4. S∆CMN.
Ответ: 18.
Используемые факты из теоретической карты: 11.
№20. В треугольнике АВС, площадь которого равна 40 см2, точка D делит
сторону ВС в отношении BD:DC= 3:2. Отрезок AD пересекает медиану BK в точке Е. Найти площадь четырехугольника EDKC.
Дополнительное построение: KN êêАD.
План решения.
1. S∆KBC. 2. BN:NC. 3. S∆KNC.
4. S∆KBN. 5. BD:ВN. 6. S∆BED.
7. SEDNK. 8. SEDCK.
Ответ: 11 см2.
Используемые факты из теоретической карты: 10, 11.
VIII. ЧЕТЫРЕХУГОЛЬНИКИ