Щитовидная железа — орган эпителиального происхождения, который закладывается в эмбриогенезе вначале как типичная экзокринная железа, и лишь в процессе дальнейшего эмбрионального развития она становится эндокринной. Кровоснабжение щитовидной железы очень интенсивное, осуществляется через 2 пары артерий, берущих начало от выходящих из аорты крупных артериальных стволов. Капилляры окружают фолликулы, тесно прилегают к эпителиальным клеткам. Иннервация железы осуществляется ветвями симпатических шейных узлов и блуждающего нерва. Интенсивный лимфоотток, наряду с венозным оттоком, обеспечивает транспорт тиреоидных гормонов в общую циркуляцию. Эндокринные функции присущи А-клеткам или тироцитам, образующим фолликулы и способным захватывать йод и синтезировать йодсодержащие тиреоидные гормоны, и парафолликулярным К-клеткам, образующим кальций-регулирую- щий гормон кальцитонин.
6.4.1. Регуляция секреции и физиологические эффекты йодсодержащих тиреоидных гормонов
Тироциты образуют фолликулы, заполненные коллоидной массой тиреоглобулина. Базальная мембрана тироцитов тесно прилежит к кровеносным капиллярам, и из крови эти клетки получают не только необходимые для энергетики и синтеза белка субстраты, но и активно захватывают соединения йода — йодиды. В тироцитах происходит синтез тиреоглобулина, окисление иодидов до образования атомарного йода. Тиреоглобулин содержит на поверхности молекулы значительное количество остатков аминокислоты тирозина (тиронины), которые и подвергаются йодированию. Через апикальную мембрану тироцита тиреоглобулин выделяется в просвет фолликула. При секреции гормонов в кровь ворсинки апикальной мембраны окружают и поглощают путем эндоцитоза капельки коллоида, которые в цитоплазме подвергаются гидролизу лизосомальными ферментами, и два продукта гидролиза — трийодтиронин (Т3) и тетрайодтиронин {тироксин, Т4) секретируются через базальную мембрану в кровь и лимфу. Все описанные процессы регулируются тиреотропином аденогипофиза. Наличие столь многочисленных процессов, регулируемых одним тиреотропином, обеспечивается за счет включения многих внутриклеточных вторичных посредников. Существует и прямая нервная регуляция щитовидной железы вегетативными нервами, хотя для активации секреции гормонов она играет меньшую роль, чем эффекты тиреотропина. Механизм отрицательной обратной связи в регуляции функции щитовидной железы реализуется уровнем тиреоидных гормонов в крови, что подавляет секрецию тиреолиберина гипоталамусом и тиреотропина гипофизом. Интенсивность секреции тиреоидных гормонов влияет на объем их синтеза в железе (механизм местной положительная обратная связь).
|
Транспорт Т3 и Т4 в крови осуществляется с помощью специальных белков, однако, в такой связанной с белком форме гормоны не способны проникать в клетки-эффекторы. Значительная часть тироксина депонируется и транспортируется эритроцитами. Дестабилизация их мембран, например под воздействием ультрафиолетового облучения, ведет к выходу тироксина в плазму крови. При взаимодействии гормона с рецептором на поверхности клеточной мембраны происходит диссоциация гормон-белко- вого комплекса, после чего гормон проникает внутрь клетки. Внутриклеточными мишенями тиреоидных гормонов являются ядро и органоиды (митохондрии). Механизм действия тиреоидных гормонов представлен на рис. 6.16. Т3 в несколько раз активнее Т4, и в тканях происходит превращение Т4 в Т3 В связи с этим основная часть эффектов тиреоидных гормонов обеспечивается Т3.
|
Основными метаболическими эффектами тиреоидных гормонов являются: 1) усиление поглощения кислорода клетками и митохондриями с активацией окислительных процессов и увеличением основного обмена,
2) стимуляция синтеза белка за счет повышения проницаемости мембран клетки для аминокислот и активации генетического аппарата клетки,
3) липолитический эффект и окисление жирных кислот с уменьшением их уровня в крови, 4) активация синтеза холестерина в печени и его экскреции с желчью, 5) гипергликемия за счет активации распада гликогена в печени и повышения всасывания глюкозы в кишечнике, 6) повышение потребления и окисления глюкозы клетками, 7) активация инсулиназы печени и ускорение инактивации инсулина, 8) стимуляция секреции инсулина за счет гипергликемии. Таким образом, избыточные количества тиреоид-
ных гормонов, стимулируя секрецию инсулина и одновременно вызывая контринсулярные эффекты, могут также способствовать развитию сахарного диабета.
Основные физиологические эффекты тиреоидных гормонов, обусловленные перечисленными выше сдвигами обмена веществ, проявляются в следующем: 1) обеспечении нормальных процессов роста, развития и дифференцировки тканей и органов, особенно центральной нервной системы, а также процессов физиологической регенерации тканей, 2) активации симпатических эффектов (тахикардия, потливость, сужение сосудов и т. п.), как за счет повышения чувствительности адренорецепторов, так и в результате подавления ферментов (моноаминоксидаза), разрушающих норадреналин, 3) повышении энергообразования в митохондриях и сократимости миокарда, 4) повышении теплообразования и температуры тела, 5) повышении возбудимости центральной нервной системы и активации психических процессов, 6) предотвращении стрессорных повреждений миокарда и язвообразования в желудке, 7) увеличении почечного кровотока, клубочковой фильтрации и диуреза при угнетении канальцевой реабсорбции в почках, 8) поддержании репродуктивной функции.
|
Избыточная продукция тиреоидных гормонов носит название гипертиреоза. При этом проявляются характерные метаболические (повышение основного обмена, гипергликемия, гипертермия, похудание) и функциональные признаки повышенного симпатического тонуса (тахикардия, потливость, повышение артериального давления и др.). Врожденная недостаточность тиреоидных гормонов, из-за наследственных дефектов или дефицита
Рис. 6.17. Баланс йода в организме.
В сутки поступает в организм с пищей и водой 500 мкг йода. Всасываясь в кровь, йодиды доставляются к щитовидной железе, где депонирован основной тиреоидный пул йода. Его расходование при секреции тиреоидных гормонов восполняется из резервного пула крови. Основное количество йода выделяется через почки с мочой (485 мкг), часть теряется с калом (15 мкг), следовательно, экскреция йода равна его поступлению в организм, что и составляет внешний баланс.
йода в организме матери, нарушает рост, развитие и дифференцировку скелета, тканей и органов, особенно центральной нервной системы, что ведет к умственной отсталости («кретинизм»). Приобретенная недостаточность щитовидной железы (дефицит йода в воде и пище, нарушение продукции гипофизом тиреотропина, повреждения ткани щитовидной железы — механические или химическими веществами) проявляется в замедлении окислительных процессов и снижении основного обмена, гипогликемии, падении возбудимости нервной системы и психической деятельности, снижении температуры тела, накоплении гликозаминогликанов и воды в подкожно-жировой клетчатке и коже (гипотиреоз, микседема или слизистый отек).
Одной из наиболее частых причин врожденной или приобретенной тиреоидной недостаточности является дефицит йода в пище и воде или нарушения его захвата из крови и утилизации железой. Основные показатели обмена йода приведены на рис. 6.17. При снижении количества йодида в крови щитовидная железа быстро компенсирует этот дефицит, усиливая захват йода. Запасы тиреоидных гормонов в щитовидной железе значительно превышают суточную потребность в них организма, поэтому кратковременные и нерезкие уменьшения потребления йода не вызывают нарушений функции железы. Если дефицит йода более выражен и длителен, синтез и секреция тиреоидных гормонов начинает отставать от потребностей организма, активируется секреция тиреолиберина гипоталамуса и тиреотропина аденогипофиза, развивается гипертрофия и гиперплазия железы, получившая название зоба. В таких случаях нередко увеличенная масса железы более эффективно поглощает и утилизирует йодид, что компенсирует йодную недостаточность и поддерживает нормальную секрецию тиреоидных гормонов. Недостаточность этой компенсаторной реакции ведет к тому, что несмотря на развитие зоба железа не в состоянии синтезировать и секретировать адекватные потребностям количества тиреоидных гормонов и возникает тиреоидная недостаточность. Особенно часто начало ее развития совпадает с повышением потребности организма в тиреоидных гормонах, например при охлаждении.
6.4.2. Регуляция секреции и физиологические эффекты кальцитонина
Кальцитонин является пептидным гормоном парафолликулярных К-кле- ток щитовидной железы, но образуется также в тимусе и в легких. В организме существует ряд близких по химической структуре гормонов, поэтому они получили собирательное название гормонов семейства кальцитонина. К ним относятся также катакальцин и мозговой пептид, родственный гену кальцитонина, причем последний, наряду с близкими кальцитонину эффектами, рассматривается в роли возможного медиатора сосудистых нервных регуляторных влияний, так как показано его выделение на окончаниях сосудодвигательных нервов. Обнаружен гормон и в спинном мозге, где также, вероятно, играет роль медиатора или модулятора синаптической передачи.
Кальцитонин относится к кальцийрегулирующим гормонам, и регуляция его секреции осуществляется уровнем ионизированного кальция плазмы крови по механизму обратной связи. Стимуляция секреции кальцитонина происходит при значительном повышении кальция в крови, тогда как обычные физиологические колебания концентрации кальция мало сказываются на секреции кальцитонина. Мощным регулирующим секрецию кальцитонина эффектом обладают нейропептиды и пептидные гормоны желудочно-кишечного тракта, особенно гастрин. Повышение секреции
Рис. 6.18. Основные эффекты кальцитонина на органы-мишени.
Гипокальциемический гормон кальцитонин усиливает выведение почками из крови (угнетая реабсорбцию) кальция и фосфата, одновременно с увеличением реабсорбции магния повышает поступление кальция и фосфата в кости, увеличивая их минерализацию. Возможен слабый эффект кальцитонина, угнетающий всасывание кальция.
кальцитонина после перорального приема кальция обусловлено выделением в кровь гормона желудка — гастрина.
Кальцитонин оказывает эффекты в результате взаимодействия с рецепторами органов-мишеней (почка, желудочно-кишечный тракт, костная ткань) через вторичные посредники цАМФ и цГМФ. Гормон снижает уровень кальция в крови {гипокальциемический гормон) за счет облегчения минерализации и подавления резорбции костной ткани, а также путем снижения реабсорбции кальция в почках (рис. 6.18). Кальцитонин вызывает фосфатурию в результате подавления реабсорбции фосфата в почечных канальцах. Гормон оказывает слабое диуретическое и натрийуретическое действие, он способен тормозить секрецию гастрина в желудке и снижать кислотность желудочного сока (эффект механизма отрицательной обратной связи).