Оптимизация без ограничений




Классический метод для функции одной переменной

На рис. 1.1 дано графическое представление функции f(x), которая имеет локальный минимум в точке и глобальный минимум в точке .

Классический подход к задаче нахождения значений и состоит в поиске уравнений, которым они должны удовлетворять. Представленная на рис. 1.1 функция и ее производные непрерывны, и видно, что в точках и производная (градиент функции) равна нулю. Следовательно, и будут решениями уравнения . (1.1)

Точка , в которой достигается локальный максимум, и точка , в которой имеется точка горизонтального перегиба функции, также удовлетворяют этому уравнению. Следовательно, уравнение является только необходимым условием минимума, но не является достаточным условием минимума.

Рис. 1.1

Заметим, однако, что в точках и производная меняет знак с отрицательного на положительный. В точке знак меняется с положительного на отрицательный, в то время как в точке он не меняется. Следовательно, производная в минимуме является возрастающей функцией, а поскольку степень возрастания измеряется второй производной, можно ожидать, что .

Если, однако, вторая производная равна нулю, ситуация остается неопределенной.

Полученные выше результаты могут найти надежное обоснование, если рассмотреть разложение функции f(x) в ряд Тейлора в окрестности точки (или , или ), что, конечно, требует непрерывности функции f(x) и ее производных:

(1.2)

Если в точке достигается минимум, то левая часть (1.2) будет неотрицательной для любого достаточно малого h (). Следовательно, первая производная должна быть равна нулю, и это является достаточным условием (см. уравнение (1.1)). Если бы она была положительной, то достаточно малое отрицательное значение h делало бы правую часть (1.2) отрицательной, а если бы она была отрицательной, то достаточно малое положительное значение h делало бы правую часть отрицательной.

Так как в следующем члене (1.2) всегда , то, если , в точке достигается минимум. Если , то из аналогичных соображений в точке достигается максимум. Для определения различия между локальным и глобальным минимумами необходимо сравнить значения функций .

Пример:

Исследовать характер точек перегиба

Тогда х = 1/3 или 1.

При x=1/3 производная меняет знак с + на -, а при x=1 c – на +. Следовательно, в точке 1/3 максимум, в точке 1 минимум.

Этот пример может быть решен более простым способом, если вычислить вторую производную

,, т. е. отрицательна, и при x = 1/3 достигается максимум;

, т. е. положительна, и при х = 1 достигается минимум.

Неоднозначность, возникающую при f"(x) = 0, можно разрешить, увеличив количество членов в формуле разложения в ряд Тейлора:

При этом можно сформулировать следующее правило:

Если функция f(х) и ее производные непрерывны, то точка является точкой экстремума (максимума или минимума) тогда, и только тогда, когда n четное, где n — порядок первой необращающейся в нуль в точке производной. Если , то в точке достигается максимум, если , то в точке достигается минимум.



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2016-04-26 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: