Переход от общего уравнения прямой к другим видам уравнения прямой и обратно.
Существуют различные виды уравнения прямой на плоскости, описывающие одну и ту же линию. В зависимости от условий задачи удобно использовать тот или иной вид уравнения прямой. Поэтому, полезно уметь переходить от уравнения прямой одного вида к уравнению прямой другого вида. Цель этого пункта статьи заключается в приобретении навыков приведения общего уравнения прямой к другим видам уравнения прямой и обратно.
Начнем с приведения общего уравнения прямой к каноническому уравнению прямой вида .
Если , то переносим слагаемое в правую часть равенства с противоположным знаком . В левой части равенства выносим А за скобки . Полученное равенство можно записать как пропорцию вида .
Если , то оставляем в левой части общего уравнения прямой только слагаемое , а остальные переносим в правую часть с противоположным знаком: . Теперь выносим в правой части равенства –B за скобки и записываем полученное равенство в виде пропорции . Вот и все.
Запоминать полученные формулы не имеет смысла, проще повторять указанные действия при приведении общего уравнения прямой к каноническому виду.
Плоскость в пространстве
Общее уравнение плоскости; его частные случаи.
Каждую плоскость в пространстве можно представить как линейное уравнение, называемое общим уравнением плоскости
, где .
Коэффициенты являются координатами нормального вектора плоскости . Вектор перпендикулярен плоскости.
Частные случаи.
1. Если в уравнении (8) , то оно принимает вид Ax+By+Cz=0.Этому ур-ю удовлетворяет точка О(0;0;0). Следовательно, плоскость проходит через начало координат.
|
2. Если С=0, то имеем ур-е: Аx+By+D=0. Нормальный вектор n=(A,B,0) перпендикулярен оси Оz. Следовательно плоскость параллельна оси Оz, если В=0 – параллельна оси Оy, А=0 – параллельна оси Оx.
3. Если С=D=0, то плоскость проходит через О(0;0;0) параллельно оси Оz, т.е. плоскость Аx+By=0 проходит через ось Оz. Аналогично ур-ям Ву+Сz=0 и Ах+Сz=0 отвечают плоскости, порходящие соответственно через ос Ох и Оу.
4. Если А=В=0, то ур-е (8) принимает вид Сz+D=0, т.е. z= -D/C. Плоскость параллельна плоскости Оху. Аналогично ур-ям Ах+D=0 и Ву+D=0 отвечают плоскости, соответственно параллельные плоскостям Оух и Охz.
5. Если А=В=D=0, то ур-е (8) примет вид Сz=0, т.е. z=0. Это ур-е плоскости Оху. Аналогично у=0 – ур-е плоскости Охz, х=0 – ур-е плоскости Оуz.
Угол между двумя плоскостями; условия параллельности и перпендикулярности плоскостей
Угол между плоскостями. Угол φ между нормальными векторами n1 и n2 двух плоскостей является углом между плоскостями.
Условия перпендикулярности 2х плоскостей. Ясно, что две плоскости перпендикулярны тогда и только тогда, когда их нормальные векторы перпендикулярны, а следовательно, или .
Таким образом, .
3) Условия параллельности 2х плоскостей. Две плоскости α1 и α2 параллельны тогда и только тогда, когда их нормальные векторы и параллельны, а значит