Преобразование Лапласа
Понятие оригинала. Кусочно-непрерывная функция называется оригиналом, если выполняются следующие условия:
1) для всех отрицательных t;
2) при растет не быстрее экспоненты, т.е. существуют такие постоянные M > 0 и c > 0, что для всех t.
Число с называется показателем роста . очевидно, что для ограниченных оригиналов показатель роста можно считать равным нулю.
Простейшим оригиналом является единичная функция Хевисайда
Если функция удовлетворяет условию 2 и не удовлетворяет 1, то произведение будет удовлетворять и условию 1, т.е. будет оригиналом. Для упрощения записи будем, как правило, множитель H (t) опускать, считая, что все рассматриваемые в этой главе функции равны нулю при отрицательных значениях t.
Легко видеть, что оригиналами являются такие функции, как и т.п.
Можно доказать, что сумма, разность и произведение оригиналов являются оригиналами и что оригиналом является функция при (доказательства следует найти самостоятельно).
Замечание. Из этих утверждений следует, что многочлены произвольной степени , а также функции вида являются оригиналами.
Интеграл Лапласа. Интегралом Лапласа для оригинала f (t) называется несобственный интеграл вида
, (14.1)
где – комплексный параметр.
Теорема. Интеграл Лапласа абсолютно сходится в полуплоскости П с: , где с – показатель роста f (t). В самом деле, по определению оригинала имеем . Таким образом, интеграл (14.1) мажорируется сходящимся интегралом , и, следовательно, сходится абсолютно в П с.
Замечание. При доказательстве теоремы получено используемое в дальнейшем неравенство:
(14.2)
Преобразование Лапласа. Интеграл Лапласа
(14.3)
представляет собой функцию параметра p, определенную в полуплоскости П с: . Функция называется Лаплас-образом (изображением по Лапласу) оригинала . Тот факт, что есть Лаплас-образ , обозначается или .
|
Соотношение (14.3), устанавливающее связь между оригиналом и его Лаплас-образом, называется преобразованием Лапласа.
Свойства преобразования Лапласа следующие:
1. Теорема линейности. При любых постоянных и
.
Это утверждение вытекает из определения (14.3) и свойств интегралов.
2. Имеет место , что непосредственно следует из неравенства (14.2).
3. Теорема подобия. Для любого
.
Действительно, полагая , получим
.
4. теорема смещения. Для любого а . Действительно,
.
5. теорема запаздывания. Для любого . По определению преобразования Лапласа имеем
.
Здесь учтено, что при . Выполнив в последнем интеграле замену , получим
.
Обратное преобразование Лапласа. Установим связь между преобразованиями Лапласа и Фурье. Так как при оригинал , то
где – показатель роста .
Интеграл в правой части последней формулы есть интеграл Фурье для . Таким образом, Лаплас-образ функции является Фурье-образом функции . Из формулы обратного преобразования Фурье получим, что в точках непрерывности
.
Отсюда
(14.4)
Если в точке t функция терпит разрыв, то значение интеграла в (14.4) равно полусумме односторонних пределов в этой точке.
Формула (14.4) определяет обратное преобразование Лапласа, с помощью которого оригинал однозначно восстанавливается по своему изображению с точностью до значений в точках разрыва.